# Find the area of the quadrilateral whose vertices taken in order, are \[\left( { - 4, - 2} \right),\left( { - 3, - 5} \right),\left( { - 3, - 2} \right){\text{ and }}\left( {2,3} \right)\].

Answer

Verified

381.9k+ views

Hint- To solve this question we will use the formula given by $\Delta = \dfrac{1}{2}\left| {{y_1}({x_2} - {x_3}) + {y_2}({x_3} - {x_1}) + {y_3}({x_1} - {x_2})} \right|$ , we will divide the quadrilateral into two triangles and then apply the formula.

Complete step-by-step solution -

Given that vertices of quadrilateral are \[\left( { - 4, - 2} \right),\left( { - 3, - 5} \right),\left( { - 3, - 2} \right){\text{ and }}\left( {2,3} \right)\]

Let \[A\left( { - 4, - 2} \right),B\left( { - 3, - 5} \right),C\left( { - 3, - 2} \right){\text{ and D}}\left( {2,3} \right)\] be the vertices of the quadrilateral.

As we know that the area of the quadrilateral ABCD= area of $\Delta ABC$ + area of $\Delta ACD$

Area of $\Delta ABC$ is given by

$ = \dfrac{1}{2}\left| {{y_1}({x_2} - {x_3}) + {y_2}({x_3} - {x_1}) + {y_3}({x_1} - {x_2})} \right|$

In $\Delta ABC$

${x_1} = - 4,{x_2} = - 3,{x_3} = 3,{y_1} = - 2,{y_2} = - 5,{y_3} = - 2$

Substituting above values in the formula, we get

$

= \dfrac{1}{2}\left| { - 2( - 3 - 3) - 5(3 + 4) - 2( - 4 + 3)} \right| \\

= \dfrac{1}{2}\left| { - 2( - 6) - 5(7) - 2( - 1)} \right| \\

= \dfrac{1}{2}\left| {12 - 35 + 2} \right| \\

= \dfrac{1}{2}\left| { - 21} \right| \\

= 10.5{\text{ sq}}{\text{.units}} \\

$

Area of $\Delta ACD$ is given by

$ = \dfrac{1}{2}\left| {{y_1}({x_2} - {x_3}) + {y_2}({x_3} - {x_1}) + {y_3}({x_1} - {x_2})} \right|$

In $\Delta ACD$

${x_1} = - 4,{x_2} = 3,{x_3} = 2,{y_1} = - 2,{y_2} = - 2,{y_3} = 3$

Substituting above values in the formula, we get

$

= \dfrac{1}{2}\left| { - 2( - 3 - 2) - 2(2 + 4) - 3( - 4 - 3)} \right| \\

= \dfrac{1}{2}\left| { - 2 - 12 - 21} \right| \\

= \dfrac{1}{2}\left| { - 35} \right| \\

= 17.5{\text{ sq}}{\text{.units}} \\

$

Therefore, the area of the quadrilateral is = $10.5 + 17.5 = 28{\text{ sq}}{\text{. units}}$

Hence, the area of the quadrilateral is $28.0{\text{ sq}}{\text{. units}}$

Note- The given problem is the coordinate geometry problem and the vertices of the quadrilateral are given. In order to solve such questions, try to break the quadrilateral in two triangles and apply the formula to calculate the area of the triangle.

Complete step-by-step solution -

Given that vertices of quadrilateral are \[\left( { - 4, - 2} \right),\left( { - 3, - 5} \right),\left( { - 3, - 2} \right){\text{ and }}\left( {2,3} \right)\]

Let \[A\left( { - 4, - 2} \right),B\left( { - 3, - 5} \right),C\left( { - 3, - 2} \right){\text{ and D}}\left( {2,3} \right)\] be the vertices of the quadrilateral.

As we know that the area of the quadrilateral ABCD= area of $\Delta ABC$ + area of $\Delta ACD$

Area of $\Delta ABC$ is given by

$ = \dfrac{1}{2}\left| {{y_1}({x_2} - {x_3}) + {y_2}({x_3} - {x_1}) + {y_3}({x_1} - {x_2})} \right|$

In $\Delta ABC$

${x_1} = - 4,{x_2} = - 3,{x_3} = 3,{y_1} = - 2,{y_2} = - 5,{y_3} = - 2$

Substituting above values in the formula, we get

$

= \dfrac{1}{2}\left| { - 2( - 3 - 3) - 5(3 + 4) - 2( - 4 + 3)} \right| \\

= \dfrac{1}{2}\left| { - 2( - 6) - 5(7) - 2( - 1)} \right| \\

= \dfrac{1}{2}\left| {12 - 35 + 2} \right| \\

= \dfrac{1}{2}\left| { - 21} \right| \\

= 10.5{\text{ sq}}{\text{.units}} \\

$

Area of $\Delta ACD$ is given by

$ = \dfrac{1}{2}\left| {{y_1}({x_2} - {x_3}) + {y_2}({x_3} - {x_1}) + {y_3}({x_1} - {x_2})} \right|$

In $\Delta ACD$

${x_1} = - 4,{x_2} = 3,{x_3} = 2,{y_1} = - 2,{y_2} = - 2,{y_3} = 3$

Substituting above values in the formula, we get

$

= \dfrac{1}{2}\left| { - 2( - 3 - 2) - 2(2 + 4) - 3( - 4 - 3)} \right| \\

= \dfrac{1}{2}\left| { - 2 - 12 - 21} \right| \\

= \dfrac{1}{2}\left| { - 35} \right| \\

= 17.5{\text{ sq}}{\text{.units}} \\

$

Therefore, the area of the quadrilateral is = $10.5 + 17.5 = 28{\text{ sq}}{\text{. units}}$

Hence, the area of the quadrilateral is $28.0{\text{ sq}}{\text{. units}}$

Note- The given problem is the coordinate geometry problem and the vertices of the quadrilateral are given. In order to solve such questions, try to break the quadrilateral in two triangles and apply the formula to calculate the area of the triangle.

Recently Updated Pages

Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Find the values of other five trigonometric ratios class 10 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts

Which one of the following places is unlikely to be class 8 physics CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is 1 divided by 0 class 8 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

Difference Between Plant Cell and Animal Cell

Find the HCF and LCM of 6 72 and 120 using the prime class 6 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers