
How do you find the area between the loop of \[r = 1 + 2\cos \theta \]?
Answer
447k+ views
Hint: Here in this we have to find the area between the loop of \[r = 1 + 2\cos \theta \]. To find the area we use formula \[A = \dfrac{1}{2}\int_\alpha ^\beta {{{(r)}^2}d\theta } \], where \[\alpha \]and \[\beta \] are the limit points. Hence by substituting all the values in the formula and then by simplifying we obtain the area of one petal.
Complete step by step explanation:
In generally let we consider \[r = a \pm b\sin (\theta )\] or \[r
= a \pm b\cos (\theta )\] where \[a > 0\], \[b > 0\] and \[a \ne b\]
Now consider the given equation \[r = 1 + 2\cos \theta \]. Here a=1, and b=2 , graph the limacon as shown
To find the area we use the formula
\[A = \dfrac{1}{2}\int_\alpha ^\beta {{{(r)}^2}d\theta } \]------- (1)
Here the limits points are not given.
Therefore, we have to find the value of
\[\alpha \] and \[\beta \]
Now consider the given equation
\[r = 1 + 2\cos \theta \] ------- (2)
Substitute r=0 in equation (2) we have
\[ \Rightarrow 0 = 1 + 2\cos (\theta )\]
This is written as
\[ \Rightarrow - \dfrac{1}{2} = \cos (\theta )\]
By taking the inverse we have
\[ \Rightarrow {\cos ^{ - 1}}\left( { - \dfrac{1}{2}} \right) = \theta \]
\[ \Rightarrow \theta = \dfrac{{2\pi }}{3}\] and \[\theta = \dfrac{{4\pi }}{3}\].
Therefore \[\theta \] varies from the angle \[\dfrac{{2\pi }}{3}\] to angle \[\dfrac{{4\pi }}{3}\]
\[\therefore \,\,\,\,\left( {\alpha ,\beta } \right) = \left( {\dfrac{{2\pi }}{3},\dfrac{{4\pi }}{3}}
\right)\]----------- (3)
Substituting equation (2) and equation (3) in equation (1) we have
\[A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {{{(1 + 2\cos (\theta ))}^2}d\theta }
\]
Applying the algebraic formula \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
\[ \Rightarrow A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {(1 + 4\cos \left( \theta \right) + 4{{\cos }^2}(\theta ))d\theta } \]
It can be also written as
\[ \Rightarrow A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {(1 + 4\cos \left( \theta \right) + 2.2{{\cos }^2}(\theta ))d\theta } \]
Apply the double angle formula for the cosine function,\[\cos 2x = 2{\cos ^2}x - 1\,\,\, \Rightarrow
\,\,\,2{\cos ^2}x = \cos 2x + 1\], then
\[ \Rightarrow A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {\left( {1 + 4\cos \left( \theta \right) + 2.\left( {\cos (2\theta ) + 1} \right)} \right)d\theta } \]
\[ \Rightarrow A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {\left( {1 + 4\cos \left(
\theta \right) + 2\cos (2\theta ) + 2} \right)d\theta } \]
On simplifying we have
\[ \Rightarrow A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {\left( {3 + 4\cos \left( \theta \right) + 2\cos (2\theta )} \right)d\theta } \]
Take integral to each term we have
\[ \Rightarrow A = \dfrac{1}{2}\left( {3\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {d\theta } + 4\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {\cos \left( \theta \right)d\theta } +
2\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {\cos (2\theta )} d\theta } \right)\]
On applying the integration, we have
\[ \Rightarrow A = \dfrac{1}{2}\left( {3\theta + 4\sin \left( \theta \right) + 2\dfrac{{\sin (2\theta)}}{2}} \right)_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}}\]
\[ \Rightarrow A = \dfrac{1}{2}\left( {3\theta + 4\sin \left( \theta \right) + \sin (2\theta )}
\right)_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}}\]
Applying the limit points, we get
\[ \Rightarrow A = \dfrac{1}{2}\left( {3 \cdot \dfrac{{4\pi }}{3} + 4\sin \left( {\dfrac{{4\pi }}{3}}\right) + \sin \left( {2 \cdot \dfrac{{4\pi }}{3}} \right) - 3 \cdot \dfrac{{2\pi }}{3} - 4\sin \left({\dfrac{{2\pi }}{3}} \right) + \sin \left( {2 \cdot \dfrac{{2\pi }}{3}} \right)} \right)\]
On simplifying we get
\[ \Rightarrow A = \dfrac{1}{2}\left( {4\pi + 4\left( { - \dfrac{{\sqrt 3 }}{2}} \right) + \left(
{\dfrac{{\sqrt 3 }}{2}} \right) - 2\pi - 4\left( {\dfrac{{\sqrt 3 }}{2}} \right) - \left( { - \dfrac{{\sqrt 3 }}{2}} \right)} \right)\]
\[ \Rightarrow A = \dfrac{1}{2}\left( {4\pi - \dfrac{{4\sqrt 3 }}{2} + \dfrac{{\sqrt 3 }}{2} - 2\pi -
\dfrac{{4\sqrt 3 }}{2} + \dfrac{{\sqrt 3 }}{2}} \right)\]
\[ \Rightarrow A = \dfrac{1}{2}\left( {2\pi - 2 \cdot \dfrac{{4\sqrt 3 }}{2} + 2 \cdot \dfrac{{\sqrt 3 }}{2}} \right)\]
\[ \Rightarrow A = \dfrac{1}{2}\left( {2\pi - 4\sqrt 3 + \sqrt 3 } \right)\]
\[ \Rightarrow A = \dfrac{1}{2}\left( {2\pi - 3\sqrt 3 } \right)\]
\[ \Rightarrow A = \pi - \dfrac{{3\sqrt 3 }}{2}\]
Therefore, the area between the loop of \[r = 1 + 2\cos \theta \] is
\[\therefore \,\,\,A = \pi - \dfrac{{3\sqrt 3 }}{2}\]
Note: The area of a petal for the circle for the polar coordinates is given by \[A =
\dfrac{1}{2}\int_\alpha ^\beta {{{(r(\theta ))}^2}d\theta } \]. The unit for the area is given as
square unit. In the polar form the coordinates are represented in the form of \[\left( {r,\theta } \right)\]where r represents the radius of the circle and the \[\theta \]represents the angle.
Complete step by step explanation:
In generally let we consider \[r = a \pm b\sin (\theta )\] or \[r
= a \pm b\cos (\theta )\] where \[a > 0\], \[b > 0\] and \[a \ne b\]
Now consider the given equation \[r = 1 + 2\cos \theta \]. Here a=1, and b=2 , graph the limacon as shown

To find the area we use the formula
\[A = \dfrac{1}{2}\int_\alpha ^\beta {{{(r)}^2}d\theta } \]------- (1)
Here the limits points are not given.
Therefore, we have to find the value of
\[\alpha \] and \[\beta \]
Now consider the given equation
\[r = 1 + 2\cos \theta \] ------- (2)
Substitute r=0 in equation (2) we have
\[ \Rightarrow 0 = 1 + 2\cos (\theta )\]
This is written as
\[ \Rightarrow - \dfrac{1}{2} = \cos (\theta )\]
By taking the inverse we have
\[ \Rightarrow {\cos ^{ - 1}}\left( { - \dfrac{1}{2}} \right) = \theta \]
\[ \Rightarrow \theta = \dfrac{{2\pi }}{3}\] and \[\theta = \dfrac{{4\pi }}{3}\].
Therefore \[\theta \] varies from the angle \[\dfrac{{2\pi }}{3}\] to angle \[\dfrac{{4\pi }}{3}\]
\[\therefore \,\,\,\,\left( {\alpha ,\beta } \right) = \left( {\dfrac{{2\pi }}{3},\dfrac{{4\pi }}{3}}
\right)\]----------- (3)
Substituting equation (2) and equation (3) in equation (1) we have
\[A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {{{(1 + 2\cos (\theta ))}^2}d\theta }
\]
Applying the algebraic formula \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
\[ \Rightarrow A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {(1 + 4\cos \left( \theta \right) + 4{{\cos }^2}(\theta ))d\theta } \]
It can be also written as
\[ \Rightarrow A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {(1 + 4\cos \left( \theta \right) + 2.2{{\cos }^2}(\theta ))d\theta } \]
Apply the double angle formula for the cosine function,\[\cos 2x = 2{\cos ^2}x - 1\,\,\, \Rightarrow
\,\,\,2{\cos ^2}x = \cos 2x + 1\], then
\[ \Rightarrow A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {\left( {1 + 4\cos \left( \theta \right) + 2.\left( {\cos (2\theta ) + 1} \right)} \right)d\theta } \]
\[ \Rightarrow A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {\left( {1 + 4\cos \left(
\theta \right) + 2\cos (2\theta ) + 2} \right)d\theta } \]
On simplifying we have
\[ \Rightarrow A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {\left( {3 + 4\cos \left( \theta \right) + 2\cos (2\theta )} \right)d\theta } \]
Take integral to each term we have
\[ \Rightarrow A = \dfrac{1}{2}\left( {3\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {d\theta } + 4\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {\cos \left( \theta \right)d\theta } +
2\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {\cos (2\theta )} d\theta } \right)\]
On applying the integration, we have
\[ \Rightarrow A = \dfrac{1}{2}\left( {3\theta + 4\sin \left( \theta \right) + 2\dfrac{{\sin (2\theta)}}{2}} \right)_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}}\]
\[ \Rightarrow A = \dfrac{1}{2}\left( {3\theta + 4\sin \left( \theta \right) + \sin (2\theta )}
\right)_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}}\]
Applying the limit points, we get
\[ \Rightarrow A = \dfrac{1}{2}\left( {3 \cdot \dfrac{{4\pi }}{3} + 4\sin \left( {\dfrac{{4\pi }}{3}}\right) + \sin \left( {2 \cdot \dfrac{{4\pi }}{3}} \right) - 3 \cdot \dfrac{{2\pi }}{3} - 4\sin \left({\dfrac{{2\pi }}{3}} \right) + \sin \left( {2 \cdot \dfrac{{2\pi }}{3}} \right)} \right)\]
On simplifying we get
\[ \Rightarrow A = \dfrac{1}{2}\left( {4\pi + 4\left( { - \dfrac{{\sqrt 3 }}{2}} \right) + \left(
{\dfrac{{\sqrt 3 }}{2}} \right) - 2\pi - 4\left( {\dfrac{{\sqrt 3 }}{2}} \right) - \left( { - \dfrac{{\sqrt 3 }}{2}} \right)} \right)\]
\[ \Rightarrow A = \dfrac{1}{2}\left( {4\pi - \dfrac{{4\sqrt 3 }}{2} + \dfrac{{\sqrt 3 }}{2} - 2\pi -
\dfrac{{4\sqrt 3 }}{2} + \dfrac{{\sqrt 3 }}{2}} \right)\]
\[ \Rightarrow A = \dfrac{1}{2}\left( {2\pi - 2 \cdot \dfrac{{4\sqrt 3 }}{2} + 2 \cdot \dfrac{{\sqrt 3 }}{2}} \right)\]
\[ \Rightarrow A = \dfrac{1}{2}\left( {2\pi - 4\sqrt 3 + \sqrt 3 } \right)\]
\[ \Rightarrow A = \dfrac{1}{2}\left( {2\pi - 3\sqrt 3 } \right)\]
\[ \Rightarrow A = \pi - \dfrac{{3\sqrt 3 }}{2}\]
Therefore, the area between the loop of \[r = 1 + 2\cos \theta \] is
\[\therefore \,\,\,A = \pi - \dfrac{{3\sqrt 3 }}{2}\]
Note: The area of a petal for the circle for the polar coordinates is given by \[A =
\dfrac{1}{2}\int_\alpha ^\beta {{{(r(\theta ))}^2}d\theta } \]. The unit for the area is given as
square unit. In the polar form the coordinates are represented in the form of \[\left( {r,\theta } \right)\]where r represents the radius of the circle and the \[\theta \]represents the angle.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

How many valence electrons does nitrogen have class 11 chemistry CBSE
