Answer

Verified

409.8k+ views

**Hint:**Here in this we have to find the area between the loop of \[r = 1 + 2\cos \theta \]. To find the area we use formula \[A = \dfrac{1}{2}\int_\alpha ^\beta {{{(r)}^2}d\theta } \], where \[\alpha \]and \[\beta \] are the limit points. Hence by substituting all the values in the formula and then by simplifying we obtain the area of one petal.

**Complete step by step explanation:**

In generally let we consider \[r = a \pm b\sin (\theta )\] or \[r

= a \pm b\cos (\theta )\] where \[a > 0\], \[b > 0\] and \[a \ne b\]

Now consider the given equation \[r = 1 + 2\cos \theta \]. Here a=1, and b=2 , graph the limacon as shown

To find the area we use the formula

\[A = \dfrac{1}{2}\int_\alpha ^\beta {{{(r)}^2}d\theta } \]------- (1)

Here the limits points are not given.

Therefore, we have to find the value of

\[\alpha \] and \[\beta \]

Now consider the given equation

\[r = 1 + 2\cos \theta \] ------- (2)

Substitute r=0 in equation (2) we have

\[ \Rightarrow 0 = 1 + 2\cos (\theta )\]

This is written as

\[ \Rightarrow - \dfrac{1}{2} = \cos (\theta )\]

By taking the inverse we have

\[ \Rightarrow {\cos ^{ - 1}}\left( { - \dfrac{1}{2}} \right) = \theta \]

\[ \Rightarrow \theta = \dfrac{{2\pi }}{3}\] and \[\theta = \dfrac{{4\pi }}{3}\].

Therefore \[\theta \] varies from the angle \[\dfrac{{2\pi }}{3}\] to angle \[\dfrac{{4\pi }}{3}\]

\[\therefore \,\,\,\,\left( {\alpha ,\beta } \right) = \left( {\dfrac{{2\pi }}{3},\dfrac{{4\pi }}{3}}

\right)\]----------- (3)

Substituting equation (2) and equation (3) in equation (1) we have

\[A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {{{(1 + 2\cos (\theta ))}^2}d\theta }

\]

Applying the algebraic formula \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]

\[ \Rightarrow A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {(1 + 4\cos \left( \theta \right) + 4{{\cos }^2}(\theta ))d\theta } \]

It can be also written as

\[ \Rightarrow A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {(1 + 4\cos \left( \theta \right) + 2.2{{\cos }^2}(\theta ))d\theta } \]

Apply the double angle formula for the cosine function,\[\cos 2x = 2{\cos ^2}x - 1\,\,\, \Rightarrow

\,\,\,2{\cos ^2}x = \cos 2x + 1\], then

\[ \Rightarrow A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {\left( {1 + 4\cos \left( \theta \right) + 2.\left( {\cos (2\theta ) + 1} \right)} \right)d\theta } \]

\[ \Rightarrow A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {\left( {1 + 4\cos \left(

\theta \right) + 2\cos (2\theta ) + 2} \right)d\theta } \]

On simplifying we have

\[ \Rightarrow A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {\left( {3 + 4\cos \left( \theta \right) + 2\cos (2\theta )} \right)d\theta } \]

Take integral to each term we have

\[ \Rightarrow A = \dfrac{1}{2}\left( {3\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {d\theta } + 4\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {\cos \left( \theta \right)d\theta } +

2\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {\cos (2\theta )} d\theta } \right)\]

On applying the integration, we have

\[ \Rightarrow A = \dfrac{1}{2}\left( {3\theta + 4\sin \left( \theta \right) + 2\dfrac{{\sin (2\theta)}}{2}} \right)_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}}\]

\[ \Rightarrow A = \dfrac{1}{2}\left( {3\theta + 4\sin \left( \theta \right) + \sin (2\theta )}

\right)_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}}\]

Applying the limit points, we get

\[ \Rightarrow A = \dfrac{1}{2}\left( {3 \cdot \dfrac{{4\pi }}{3} + 4\sin \left( {\dfrac{{4\pi }}{3}}\right) + \sin \left( {2 \cdot \dfrac{{4\pi }}{3}} \right) - 3 \cdot \dfrac{{2\pi }}{3} - 4\sin \left({\dfrac{{2\pi }}{3}} \right) + \sin \left( {2 \cdot \dfrac{{2\pi }}{3}} \right)} \right)\]

On simplifying we get

\[ \Rightarrow A = \dfrac{1}{2}\left( {4\pi + 4\left( { - \dfrac{{\sqrt 3 }}{2}} \right) + \left(

{\dfrac{{\sqrt 3 }}{2}} \right) - 2\pi - 4\left( {\dfrac{{\sqrt 3 }}{2}} \right) - \left( { - \dfrac{{\sqrt 3 }}{2}} \right)} \right)\]

\[ \Rightarrow A = \dfrac{1}{2}\left( {4\pi - \dfrac{{4\sqrt 3 }}{2} + \dfrac{{\sqrt 3 }}{2} - 2\pi -

\dfrac{{4\sqrt 3 }}{2} + \dfrac{{\sqrt 3 }}{2}} \right)\]

\[ \Rightarrow A = \dfrac{1}{2}\left( {2\pi - 2 \cdot \dfrac{{4\sqrt 3 }}{2} + 2 \cdot \dfrac{{\sqrt 3 }}{2}} \right)\]

\[ \Rightarrow A = \dfrac{1}{2}\left( {2\pi - 4\sqrt 3 + \sqrt 3 } \right)\]

\[ \Rightarrow A = \dfrac{1}{2}\left( {2\pi - 3\sqrt 3 } \right)\]

\[ \Rightarrow A = \pi - \dfrac{{3\sqrt 3 }}{2}\]

**Therefore, the area between the loop of \[r = 1 + 2\cos \theta \] is**

\[\therefore \,\,\,A = \pi - \dfrac{{3\sqrt 3 }}{2}\]

\[\therefore \,\,\,A = \pi - \dfrac{{3\sqrt 3 }}{2}\]

**Note:**The area of a petal for the circle for the polar coordinates is given by \[A =

\dfrac{1}{2}\int_\alpha ^\beta {{{(r(\theta ))}^2}d\theta } \]. The unit for the area is given as

square unit. In the polar form the coordinates are represented in the form of \[\left( {r,\theta } \right)\]where r represents the radius of the circle and the \[\theta \]represents the angle.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Mark and label the given geoinformation on the outline class 11 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

How do you graph the function fx 4x class 9 maths CBSE

Difference Between Plant Cell and Animal Cell

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

What organs are located on the left side of your body class 11 biology CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE