
How do you find the area between the loop of \[r = 1 + 2\cos \theta \]?
Answer
553.5k+ views
Hint: Here in this we have to find the area between the loop of \[r = 1 + 2\cos \theta \]. To find the area we use formula \[A = \dfrac{1}{2}\int_\alpha ^\beta {{{(r)}^2}d\theta } \], where \[\alpha \]and \[\beta \] are the limit points. Hence by substituting all the values in the formula and then by simplifying we obtain the area of one petal.
Complete step by step explanation:
In generally let we consider \[r = a \pm b\sin (\theta )\] or \[r
= a \pm b\cos (\theta )\] where \[a > 0\], \[b > 0\] and \[a \ne b\]
Now consider the given equation \[r = 1 + 2\cos \theta \]. Here a=1, and b=2 , graph the limacon as shown
To find the area we use the formula
\[A = \dfrac{1}{2}\int_\alpha ^\beta {{{(r)}^2}d\theta } \]------- (1)
Here the limits points are not given.
Therefore, we have to find the value of
\[\alpha \] and \[\beta \]
Now consider the given equation
\[r = 1 + 2\cos \theta \] ------- (2)
Substitute r=0 in equation (2) we have
\[ \Rightarrow 0 = 1 + 2\cos (\theta )\]
This is written as
\[ \Rightarrow - \dfrac{1}{2} = \cos (\theta )\]
By taking the inverse we have
\[ \Rightarrow {\cos ^{ - 1}}\left( { - \dfrac{1}{2}} \right) = \theta \]
\[ \Rightarrow \theta = \dfrac{{2\pi }}{3}\] and \[\theta = \dfrac{{4\pi }}{3}\].
Therefore \[\theta \] varies from the angle \[\dfrac{{2\pi }}{3}\] to angle \[\dfrac{{4\pi }}{3}\]
\[\therefore \,\,\,\,\left( {\alpha ,\beta } \right) = \left( {\dfrac{{2\pi }}{3},\dfrac{{4\pi }}{3}}
\right)\]----------- (3)
Substituting equation (2) and equation (3) in equation (1) we have
\[A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {{{(1 + 2\cos (\theta ))}^2}d\theta }
\]
Applying the algebraic formula \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
\[ \Rightarrow A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {(1 + 4\cos \left( \theta \right) + 4{{\cos }^2}(\theta ))d\theta } \]
It can be also written as
\[ \Rightarrow A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {(1 + 4\cos \left( \theta \right) + 2.2{{\cos }^2}(\theta ))d\theta } \]
Apply the double angle formula for the cosine function,\[\cos 2x = 2{\cos ^2}x - 1\,\,\, \Rightarrow
\,\,\,2{\cos ^2}x = \cos 2x + 1\], then
\[ \Rightarrow A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {\left( {1 + 4\cos \left( \theta \right) + 2.\left( {\cos (2\theta ) + 1} \right)} \right)d\theta } \]
\[ \Rightarrow A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {\left( {1 + 4\cos \left(
\theta \right) + 2\cos (2\theta ) + 2} \right)d\theta } \]
On simplifying we have
\[ \Rightarrow A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {\left( {3 + 4\cos \left( \theta \right) + 2\cos (2\theta )} \right)d\theta } \]
Take integral to each term we have
\[ \Rightarrow A = \dfrac{1}{2}\left( {3\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {d\theta } + 4\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {\cos \left( \theta \right)d\theta } +
2\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {\cos (2\theta )} d\theta } \right)\]
On applying the integration, we have
\[ \Rightarrow A = \dfrac{1}{2}\left( {3\theta + 4\sin \left( \theta \right) + 2\dfrac{{\sin (2\theta)}}{2}} \right)_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}}\]
\[ \Rightarrow A = \dfrac{1}{2}\left( {3\theta + 4\sin \left( \theta \right) + \sin (2\theta )}
\right)_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}}\]
Applying the limit points, we get
\[ \Rightarrow A = \dfrac{1}{2}\left( {3 \cdot \dfrac{{4\pi }}{3} + 4\sin \left( {\dfrac{{4\pi }}{3}}\right) + \sin \left( {2 \cdot \dfrac{{4\pi }}{3}} \right) - 3 \cdot \dfrac{{2\pi }}{3} - 4\sin \left({\dfrac{{2\pi }}{3}} \right) + \sin \left( {2 \cdot \dfrac{{2\pi }}{3}} \right)} \right)\]
On simplifying we get
\[ \Rightarrow A = \dfrac{1}{2}\left( {4\pi + 4\left( { - \dfrac{{\sqrt 3 }}{2}} \right) + \left(
{\dfrac{{\sqrt 3 }}{2}} \right) - 2\pi - 4\left( {\dfrac{{\sqrt 3 }}{2}} \right) - \left( { - \dfrac{{\sqrt 3 }}{2}} \right)} \right)\]
\[ \Rightarrow A = \dfrac{1}{2}\left( {4\pi - \dfrac{{4\sqrt 3 }}{2} + \dfrac{{\sqrt 3 }}{2} - 2\pi -
\dfrac{{4\sqrt 3 }}{2} + \dfrac{{\sqrt 3 }}{2}} \right)\]
\[ \Rightarrow A = \dfrac{1}{2}\left( {2\pi - 2 \cdot \dfrac{{4\sqrt 3 }}{2} + 2 \cdot \dfrac{{\sqrt 3 }}{2}} \right)\]
\[ \Rightarrow A = \dfrac{1}{2}\left( {2\pi - 4\sqrt 3 + \sqrt 3 } \right)\]
\[ \Rightarrow A = \dfrac{1}{2}\left( {2\pi - 3\sqrt 3 } \right)\]
\[ \Rightarrow A = \pi - \dfrac{{3\sqrt 3 }}{2}\]
Therefore, the area between the loop of \[r = 1 + 2\cos \theta \] is
\[\therefore \,\,\,A = \pi - \dfrac{{3\sqrt 3 }}{2}\]
Note: The area of a petal for the circle for the polar coordinates is given by \[A =
\dfrac{1}{2}\int_\alpha ^\beta {{{(r(\theta ))}^2}d\theta } \]. The unit for the area is given as
square unit. In the polar form the coordinates are represented in the form of \[\left( {r,\theta } \right)\]where r represents the radius of the circle and the \[\theta \]represents the angle.
Complete step by step explanation:
In generally let we consider \[r = a \pm b\sin (\theta )\] or \[r
= a \pm b\cos (\theta )\] where \[a > 0\], \[b > 0\] and \[a \ne b\]
Now consider the given equation \[r = 1 + 2\cos \theta \]. Here a=1, and b=2 , graph the limacon as shown
To find the area we use the formula
\[A = \dfrac{1}{2}\int_\alpha ^\beta {{{(r)}^2}d\theta } \]------- (1)
Here the limits points are not given.
Therefore, we have to find the value of
\[\alpha \] and \[\beta \]
Now consider the given equation
\[r = 1 + 2\cos \theta \] ------- (2)
Substitute r=0 in equation (2) we have
\[ \Rightarrow 0 = 1 + 2\cos (\theta )\]
This is written as
\[ \Rightarrow - \dfrac{1}{2} = \cos (\theta )\]
By taking the inverse we have
\[ \Rightarrow {\cos ^{ - 1}}\left( { - \dfrac{1}{2}} \right) = \theta \]
\[ \Rightarrow \theta = \dfrac{{2\pi }}{3}\] and \[\theta = \dfrac{{4\pi }}{3}\].
Therefore \[\theta \] varies from the angle \[\dfrac{{2\pi }}{3}\] to angle \[\dfrac{{4\pi }}{3}\]
\[\therefore \,\,\,\,\left( {\alpha ,\beta } \right) = \left( {\dfrac{{2\pi }}{3},\dfrac{{4\pi }}{3}}
\right)\]----------- (3)
Substituting equation (2) and equation (3) in equation (1) we have
\[A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {{{(1 + 2\cos (\theta ))}^2}d\theta }
\]
Applying the algebraic formula \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
\[ \Rightarrow A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {(1 + 4\cos \left( \theta \right) + 4{{\cos }^2}(\theta ))d\theta } \]
It can be also written as
\[ \Rightarrow A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {(1 + 4\cos \left( \theta \right) + 2.2{{\cos }^2}(\theta ))d\theta } \]
Apply the double angle formula for the cosine function,\[\cos 2x = 2{\cos ^2}x - 1\,\,\, \Rightarrow
\,\,\,2{\cos ^2}x = \cos 2x + 1\], then
\[ \Rightarrow A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {\left( {1 + 4\cos \left( \theta \right) + 2.\left( {\cos (2\theta ) + 1} \right)} \right)d\theta } \]
\[ \Rightarrow A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {\left( {1 + 4\cos \left(
\theta \right) + 2\cos (2\theta ) + 2} \right)d\theta } \]
On simplifying we have
\[ \Rightarrow A = \dfrac{1}{2}\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {\left( {3 + 4\cos \left( \theta \right) + 2\cos (2\theta )} \right)d\theta } \]
Take integral to each term we have
\[ \Rightarrow A = \dfrac{1}{2}\left( {3\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {d\theta } + 4\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {\cos \left( \theta \right)d\theta } +
2\int_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}} {\cos (2\theta )} d\theta } \right)\]
On applying the integration, we have
\[ \Rightarrow A = \dfrac{1}{2}\left( {3\theta + 4\sin \left( \theta \right) + 2\dfrac{{\sin (2\theta)}}{2}} \right)_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}}\]
\[ \Rightarrow A = \dfrac{1}{2}\left( {3\theta + 4\sin \left( \theta \right) + \sin (2\theta )}
\right)_{\dfrac{{2\pi }}{3}}^{\dfrac{{4\pi }}{3}}\]
Applying the limit points, we get
\[ \Rightarrow A = \dfrac{1}{2}\left( {3 \cdot \dfrac{{4\pi }}{3} + 4\sin \left( {\dfrac{{4\pi }}{3}}\right) + \sin \left( {2 \cdot \dfrac{{4\pi }}{3}} \right) - 3 \cdot \dfrac{{2\pi }}{3} - 4\sin \left({\dfrac{{2\pi }}{3}} \right) + \sin \left( {2 \cdot \dfrac{{2\pi }}{3}} \right)} \right)\]
On simplifying we get
\[ \Rightarrow A = \dfrac{1}{2}\left( {4\pi + 4\left( { - \dfrac{{\sqrt 3 }}{2}} \right) + \left(
{\dfrac{{\sqrt 3 }}{2}} \right) - 2\pi - 4\left( {\dfrac{{\sqrt 3 }}{2}} \right) - \left( { - \dfrac{{\sqrt 3 }}{2}} \right)} \right)\]
\[ \Rightarrow A = \dfrac{1}{2}\left( {4\pi - \dfrac{{4\sqrt 3 }}{2} + \dfrac{{\sqrt 3 }}{2} - 2\pi -
\dfrac{{4\sqrt 3 }}{2} + \dfrac{{\sqrt 3 }}{2}} \right)\]
\[ \Rightarrow A = \dfrac{1}{2}\left( {2\pi - 2 \cdot \dfrac{{4\sqrt 3 }}{2} + 2 \cdot \dfrac{{\sqrt 3 }}{2}} \right)\]
\[ \Rightarrow A = \dfrac{1}{2}\left( {2\pi - 4\sqrt 3 + \sqrt 3 } \right)\]
\[ \Rightarrow A = \dfrac{1}{2}\left( {2\pi - 3\sqrt 3 } \right)\]
\[ \Rightarrow A = \pi - \dfrac{{3\sqrt 3 }}{2}\]
Therefore, the area between the loop of \[r = 1 + 2\cos \theta \] is
\[\therefore \,\,\,A = \pi - \dfrac{{3\sqrt 3 }}{2}\]
Note: The area of a petal for the circle for the polar coordinates is given by \[A =
\dfrac{1}{2}\int_\alpha ^\beta {{{(r(\theta ))}^2}d\theta } \]. The unit for the area is given as
square unit. In the polar form the coordinates are represented in the form of \[\left( {r,\theta } \right)\]where r represents the radius of the circle and the \[\theta \]represents the angle.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

