
How do you find the antiderivative of \[{{\left( 5x+1 \right)}^{2}}\] ?
Answer
535.2k+ views
Hint: For the given question we are given to solve the antiderivative of \[{{\left( 5x+1 \right)}^{2}}\]. For that let us expand the given equation by using basic algebraic formulas and then we have to integrate the resultant equation by using the basic integration formulas.
Complete step by step answer:
For the given problem we are given to find the antiderivative of the equation \[{{\left( 5x+1 \right)}^{2}}\].
Let us consider the given equation as equation (1) to get solved.
\[a={{\left( 5x+1 \right)}^{2}}...........\left( 1 \right)\]
For a polynomial of just degree 2, I would expand the equation and solve.
So, let us expand the equation (1) by using the formula \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\].
Let us consider the given formula as formula (f1).
\[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}............\left( f1 \right)\]
By using the formula (f1) let us expand equation (1)
\[\Rightarrow a=25{{x}^{2}}+1+10x\]
Let us consider the above equation as equation (2).
\[\Rightarrow a=25{{x}^{2}}+1+10x................\left( 2 \right)\]
By doing antiderivative to the equation (2).
\[\Rightarrow a=\int{25{{x}^{2}}+1+10x\text{ dx}}\]
Let us consider the given equation as equation (2).
\[\Rightarrow a=\int{25{{x}^{2}}+1+10x\text{ dx}}...............\left( 2 \right)\]
As we know the formula \[\int{{{a}^{x}}dx=\dfrac{{{a}^{x+1}}}{x+1}+c}\].
Let us consider the above formula as (f2).
\[\int{{{a}^{x}}dx=\dfrac{{{a}^{x+1}}}{x+1}+c}................\left( 2 \right)\]
By applying formula (f2) to equation (2), we get
\[\Rightarrow a=25\dfrac{{{x}^{3}}}{3}+x+10\dfrac{{{x}^{2}}}{2}\]
By simplifying a bit, we get
\[\Rightarrow a=\dfrac{25}{3}{{x}^{3}}+x+5{{x}^{2}}+c\]
By arranging terms in power wise, we get
\[\Rightarrow a=\dfrac{25}{3}{{x}^{3}}+5{{x}^{2}}+x+c\]
Therefore, let us consider the equation as equation (3).
\[\Rightarrow a=\dfrac{25}{3}{{x}^{3}}+x+5{{x}^{2}}+c...............\left( 3 \right)\]
Therefore, antiderivative of \[{{\left( 5x+1 \right)}^{2}}\] is \[a=\dfrac{25}{3}{{x}^{3}}+5{{x}^{2}}+x+c\].
Note:
We should know that antiderivative means summation i.e. integration. We can do this problem by another way i.e. we can do direct integration to the given equation without expanding. But I think the way I solved this problem is easier than any other method.
Complete step by step answer:
For the given problem we are given to find the antiderivative of the equation \[{{\left( 5x+1 \right)}^{2}}\].
Let us consider the given equation as equation (1) to get solved.
\[a={{\left( 5x+1 \right)}^{2}}...........\left( 1 \right)\]
For a polynomial of just degree 2, I would expand the equation and solve.
So, let us expand the equation (1) by using the formula \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\].
Let us consider the given formula as formula (f1).
\[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}............\left( f1 \right)\]
By using the formula (f1) let us expand equation (1)
\[\Rightarrow a=25{{x}^{2}}+1+10x\]
Let us consider the above equation as equation (2).
\[\Rightarrow a=25{{x}^{2}}+1+10x................\left( 2 \right)\]
By doing antiderivative to the equation (2).
\[\Rightarrow a=\int{25{{x}^{2}}+1+10x\text{ dx}}\]
Let us consider the given equation as equation (2).
\[\Rightarrow a=\int{25{{x}^{2}}+1+10x\text{ dx}}...............\left( 2 \right)\]
As we know the formula \[\int{{{a}^{x}}dx=\dfrac{{{a}^{x+1}}}{x+1}+c}\].
Let us consider the above formula as (f2).
\[\int{{{a}^{x}}dx=\dfrac{{{a}^{x+1}}}{x+1}+c}................\left( 2 \right)\]
By applying formula (f2) to equation (2), we get
\[\Rightarrow a=25\dfrac{{{x}^{3}}}{3}+x+10\dfrac{{{x}^{2}}}{2}\]
By simplifying a bit, we get
\[\Rightarrow a=\dfrac{25}{3}{{x}^{3}}+x+5{{x}^{2}}+c\]
By arranging terms in power wise, we get
\[\Rightarrow a=\dfrac{25}{3}{{x}^{3}}+5{{x}^{2}}+x+c\]
Therefore, let us consider the equation as equation (3).
\[\Rightarrow a=\dfrac{25}{3}{{x}^{3}}+x+5{{x}^{2}}+c...............\left( 3 \right)\]
Therefore, antiderivative of \[{{\left( 5x+1 \right)}^{2}}\] is \[a=\dfrac{25}{3}{{x}^{3}}+5{{x}^{2}}+x+c\].
Note:
We should know that antiderivative means summation i.e. integration. We can do this problem by another way i.e. we can do direct integration to the given equation without expanding. But I think the way I solved this problem is easier than any other method.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

