
How do you find the antiderivative of \[\int{\left( {{\sin }^{7}}x \right)dx}\] from \[[-1,1]\]?
Answer
491.1k+ views
Hint: To solve the given integral, we need to know some of the properties of integration. The property we will be using to solve this integration is \[\int\limits_{a}^{b}{f(x)}=\int\limits_{a}^{b}{f(a+b-x)}\]. This property is used as follows,
Let’s say \[I=\int\limits_{a}^{b}{f(x)}\], using the above property we get \[I=\int\limits_{a}^{b}{f(a+b-x)}\]. Adding both of the above integrals, we get \[2I=\int\limits_{a}^{b}{f(x)}+\int\limits_{a}^{b}{f(a+b-x)}\].
Complete step-by-step answer:
We are asked to find the antiderivative of \[\int{\left( {{\sin }^{7}}x \right)dx}\] from \[[-1,1]\]. This means we have to find the value of the definite integral \[\int\limits_{-1}^{1}{\left( {{\sin }^{7}}x \right)dx}\]. We can use the integration property \[\int\limits_{a}^{b}{f(x)}=\int\limits_{a}^{b}{f(a+b-x)}\]. Using this property, we get \[\int\limits_{-1}^{1}{\left( {{\sin }^{7}}x \right)dx}=\int\limits_{-1}^{1}{\left( {{\sin }^{7}}\left( 1-1-x \right) \right)dx}\].
Let’s say \[I=\int\limits_{-1}^{1}{\left( {{\sin }^{7}}x \right)dx}\]. From above, we can also say that \[I=\int\limits_{-1}^{1}{\left( {{\sin }^{7}}\left( 1-1-x \right) \right)dx}\]. Adding both integrals, we get
\[2I=\int\limits_{-1}^{1}{\left( {{\sin }^{7}}x \right)dx}+\int\limits_{-1}^{1}{\left( {{\sin }^{7}}\left( 1-1-x \right) \right)dx}\]
Simplifying the above equation, we get
\[\Rightarrow 2I=\int\limits_{-1}^{1}{\left( {{\sin }^{7}}x \right)dx}+\int\limits_{-1}^{1}{\left( {{\sin }^{7}}\left( -x \right) \right)dx}\]
We know that, \[\sin (-x)=-\sin x\]. Using the property in the above equation, we get
\[\Rightarrow 2I=\int\limits_{-1}^{1}{\left( {{\sin }^{7}}x \right)dx}+\int\limits_{-1}^{1}{\left( {{\left( -\sin x \right)}^{7}} \right)dx}\]
Simplifying the above equation, we get
\[\Rightarrow 2I=\int\limits_{-1}^{1}{\left( {{\sin }^{7}}x \right)dx}+\int\limits_{-1}^{1}{-\left( {{\sin }^{7}}x \right)dx}\]
As we know that constants can be taken out of the integration, taking \[-1\] out of the integration from the second integral in the right-hand side of the above equation, we get
\[\Rightarrow 2I=\int\limits_{-1}^{1}{\left( {{\sin }^{7}}x \right)dx}-\int\limits_{-1}^{1}{\left( {{\sin }^{7}}x \right)dx}\]
\[\begin{align}
& \Rightarrow 2I=0 \\
& \therefore I=0 \\
\end{align}\]
Thus, we get \[I=\int\limits_{-1}^{1}{\left( {{\sin }^{7}}x \right)dx}=0\].
Note: We can make a general property from the above question, to solve these types of problems as follows:
Let’s say \[f(x)\] is an odd function, from this, we can say that \[f(-x)=f(x)\]. Then the value of the definite integral \[\int\limits_{-a}^{a}{f(x)dx}\] equals 0.
For the given question, we have \[f(x)={{\sin }^{7}}x\] which is an odd function. Hence, using the above property, we can say that \[\int\limits_{-1}^{1}{\left( {{\sin }^{7}}x \right)dx}=0\].
Let’s say \[I=\int\limits_{a}^{b}{f(x)}\], using the above property we get \[I=\int\limits_{a}^{b}{f(a+b-x)}\]. Adding both of the above integrals, we get \[2I=\int\limits_{a}^{b}{f(x)}+\int\limits_{a}^{b}{f(a+b-x)}\].
Complete step-by-step answer:
We are asked to find the antiderivative of \[\int{\left( {{\sin }^{7}}x \right)dx}\] from \[[-1,1]\]. This means we have to find the value of the definite integral \[\int\limits_{-1}^{1}{\left( {{\sin }^{7}}x \right)dx}\]. We can use the integration property \[\int\limits_{a}^{b}{f(x)}=\int\limits_{a}^{b}{f(a+b-x)}\]. Using this property, we get \[\int\limits_{-1}^{1}{\left( {{\sin }^{7}}x \right)dx}=\int\limits_{-1}^{1}{\left( {{\sin }^{7}}\left( 1-1-x \right) \right)dx}\].
Let’s say \[I=\int\limits_{-1}^{1}{\left( {{\sin }^{7}}x \right)dx}\]. From above, we can also say that \[I=\int\limits_{-1}^{1}{\left( {{\sin }^{7}}\left( 1-1-x \right) \right)dx}\]. Adding both integrals, we get
\[2I=\int\limits_{-1}^{1}{\left( {{\sin }^{7}}x \right)dx}+\int\limits_{-1}^{1}{\left( {{\sin }^{7}}\left( 1-1-x \right) \right)dx}\]
Simplifying the above equation, we get
\[\Rightarrow 2I=\int\limits_{-1}^{1}{\left( {{\sin }^{7}}x \right)dx}+\int\limits_{-1}^{1}{\left( {{\sin }^{7}}\left( -x \right) \right)dx}\]
We know that, \[\sin (-x)=-\sin x\]. Using the property in the above equation, we get
\[\Rightarrow 2I=\int\limits_{-1}^{1}{\left( {{\sin }^{7}}x \right)dx}+\int\limits_{-1}^{1}{\left( {{\left( -\sin x \right)}^{7}} \right)dx}\]
Simplifying the above equation, we get
\[\Rightarrow 2I=\int\limits_{-1}^{1}{\left( {{\sin }^{7}}x \right)dx}+\int\limits_{-1}^{1}{-\left( {{\sin }^{7}}x \right)dx}\]
As we know that constants can be taken out of the integration, taking \[-1\] out of the integration from the second integral in the right-hand side of the above equation, we get
\[\Rightarrow 2I=\int\limits_{-1}^{1}{\left( {{\sin }^{7}}x \right)dx}-\int\limits_{-1}^{1}{\left( {{\sin }^{7}}x \right)dx}\]
\[\begin{align}
& \Rightarrow 2I=0 \\
& \therefore I=0 \\
\end{align}\]
Thus, we get \[I=\int\limits_{-1}^{1}{\left( {{\sin }^{7}}x \right)dx}=0\].
Note: We can make a general property from the above question, to solve these types of problems as follows:
Let’s say \[f(x)\] is an odd function, from this, we can say that \[f(-x)=f(x)\]. Then the value of the definite integral \[\int\limits_{-a}^{a}{f(x)dx}\] equals 0.
For the given question, we have \[f(x)={{\sin }^{7}}x\] which is an odd function. Hence, using the above property, we can say that \[\int\limits_{-1}^{1}{\left( {{\sin }^{7}}x \right)dx}=0\].
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Sketch the electric field lines in case of an electric class 12 physics CBSE

State and explain Coulombs law in electrostatics class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE
