Answer
Verified
426.6k+ views
Hint: Find the integration of the given function in order to find its antiderivative. The given trigonometric expression is non elementary, so use the Maclaurin power expansion of the given function and then integrate that expansion to the antiderivative of the given function. Maclaurin expansion of cosine is given as
$\cos x = \sum\limits_{n = 0}^\infty {\dfrac{{{{( - 1)}^n}}}{{(2n)!}}{x^{2n}}} $
Use this information to find the antiderivative of the given function.
Formula used:
Maclaurin series of cosine $\cos x = \sum\limits_{n = 0}^\infty {\dfrac{{{{( - 1)}^n}}}{{(2n)!}}{x^{2n}}} $
Complete step by step solution:
To find the antiderivative of $\cos \left( {{x^2}} \right)$, let us understand first what is antiderivative of a function?
When we take an antiderivative also called the inverse derivative of a function f is a function then it gives a function F whose derivative is equal to the original function f.
That is in simple words antiderivative is the integration of a function.
Therefore to find the antiderivative of $\cos \left( {{x^2}} \right)$, we will find its integration.
Since the integral of $\cos \left( {{x^2}} \right)$ is non elementary, we cannot integrate it directly, so we will integrate it via power series.
For integration via power series, let us recall the Maclaurin series of cosine,
$
\cos x = \sum\limits_{n = 0}^\infty {\dfrac{{{{( - 1)}^n}}}{{(2n)!}}{x^{2n}}} \\
\Rightarrow \cos \left( {{x^2}} \right) = \sum\limits_{n = 0}^\infty {\dfrac{{{{( -
1)}^n}}}{{(2n)!}}{{\left( {{x^2}} \right)}^{2n}}} \\
\therefore \cos \left( {{x^2}} \right) = \sum\limits_{n = 0}^\infty {\dfrac{{{{( -
1)}^n}}}{{(2n)!}}{x^{4n}}} \\
$
Taking the integration both sides, we will get
$\int {\cos \left( {{x^2}} \right)dx} = \int {\sum\limits_{n = 0}^\infty {\dfrac{{{{( -
1)}^n}}}{{(2n)!}}{x^{4n}}} } dx$
Here taking out the constant term,
$
\int {\cos \left( {{x^2}} \right)dx} = \sum\limits_{n = 0}^\infty {\dfrac{{{{( - 1)}^n}}}{{(2n)!}}} \int
{{x^{4n}}} dx \\
= \sum\limits_{n = 0}^\infty {\dfrac{{{{( - 1)}^n}}}{{(2n)!}}} \times \dfrac{{{x^{4n + 1}}}}{{(4n + 1)}} +
C \\
= \sum\limits_{n = 0}^\infty {\dfrac{{{{( - 1)}^n}{x^{4n + 1}}}}{{(2n)!(4n + 1)}}} + C \\
$
Therefore $\sum\limits_{n = 0}^\infty {\dfrac{{{{( - 1)}^n}{x^{4n + 1}}}}{{(2n)!(4n + 1)}}} + C$ is the required antiderivative of $\cos \left( {{x^2}} \right)$
Note: There is a bit difference in antiderivative and integration, Integration is a function associates with the original function whereas antiderivative of $f(x)$ is just a function whose derivative is $f(x)$ This question can be solved with one more method in which we integrate $\cos \left( {{x^2}} \right)$ with help of the Fresnel integral. You will get a different expression at the end of the Fresnel integral process for this question but don’t worry both are equal and correct.
$\cos x = \sum\limits_{n = 0}^\infty {\dfrac{{{{( - 1)}^n}}}{{(2n)!}}{x^{2n}}} $
Use this information to find the antiderivative of the given function.
Formula used:
Maclaurin series of cosine $\cos x = \sum\limits_{n = 0}^\infty {\dfrac{{{{( - 1)}^n}}}{{(2n)!}}{x^{2n}}} $
Complete step by step solution:
To find the antiderivative of $\cos \left( {{x^2}} \right)$, let us understand first what is antiderivative of a function?
When we take an antiderivative also called the inverse derivative of a function f is a function then it gives a function F whose derivative is equal to the original function f.
That is in simple words antiderivative is the integration of a function.
Therefore to find the antiderivative of $\cos \left( {{x^2}} \right)$, we will find its integration.
Since the integral of $\cos \left( {{x^2}} \right)$ is non elementary, we cannot integrate it directly, so we will integrate it via power series.
For integration via power series, let us recall the Maclaurin series of cosine,
$
\cos x = \sum\limits_{n = 0}^\infty {\dfrac{{{{( - 1)}^n}}}{{(2n)!}}{x^{2n}}} \\
\Rightarrow \cos \left( {{x^2}} \right) = \sum\limits_{n = 0}^\infty {\dfrac{{{{( -
1)}^n}}}{{(2n)!}}{{\left( {{x^2}} \right)}^{2n}}} \\
\therefore \cos \left( {{x^2}} \right) = \sum\limits_{n = 0}^\infty {\dfrac{{{{( -
1)}^n}}}{{(2n)!}}{x^{4n}}} \\
$
Taking the integration both sides, we will get
$\int {\cos \left( {{x^2}} \right)dx} = \int {\sum\limits_{n = 0}^\infty {\dfrac{{{{( -
1)}^n}}}{{(2n)!}}{x^{4n}}} } dx$
Here taking out the constant term,
$
\int {\cos \left( {{x^2}} \right)dx} = \sum\limits_{n = 0}^\infty {\dfrac{{{{( - 1)}^n}}}{{(2n)!}}} \int
{{x^{4n}}} dx \\
= \sum\limits_{n = 0}^\infty {\dfrac{{{{( - 1)}^n}}}{{(2n)!}}} \times \dfrac{{{x^{4n + 1}}}}{{(4n + 1)}} +
C \\
= \sum\limits_{n = 0}^\infty {\dfrac{{{{( - 1)}^n}{x^{4n + 1}}}}{{(2n)!(4n + 1)}}} + C \\
$
Therefore $\sum\limits_{n = 0}^\infty {\dfrac{{{{( - 1)}^n}{x^{4n + 1}}}}{{(2n)!(4n + 1)}}} + C$ is the required antiderivative of $\cos \left( {{x^2}} \right)$
Note: There is a bit difference in antiderivative and integration, Integration is a function associates with the original function whereas antiderivative of $f(x)$ is just a function whose derivative is $f(x)$ This question can be solved with one more method in which we integrate $\cos \left( {{x^2}} \right)$ with help of the Fresnel integral. You will get a different expression at the end of the Fresnel integral process for this question but don’t worry both are equal and correct.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it