Answer
Verified
465.6k+ views
Hint: Note that, the differences of the terms of the given sequence are in arithmetic progression. Find the closed expression for the nth term of the sequence first. Then calculate the sum up to the nth term
${S_n} = \sum\limits_{i = 1}^n {{a_i}} $
Complete step-by-step answer:
The terms of the given sequence are
$
{a_1} = 1 \\
{a_2} = 5 \\
{a_3} = 12 \\
\vdots \\
$
We see their differences are in arithmetic progression with first term 4 and common difference 3, i.e.
$
{\text{ }}{{{a}}_2} - {a_1} = 4 \\
{}_ + {{{a}}_3} - {{{a}}_2} = 7 \\
{}_ + {{{a}}_4} - {{{a}}_3} = 10 \\
\vdots \\
\vdots \\
{}_ + {a_n} - {{{a}}_{n - 1}} = 3n - 2 \\
$
Adding all the equations, we get
$
{a_n} - {a_1} = 4 + 7 + 10 + ...... + (3n - 2) \\
As{\text{ }}4 + 7 + 10 + ...... + (3n - 2){\text{ }}are{\text{ }}in{\text{ }}AP \\
where{\text{ }}a = 4,{\text{ }}d = 3{\text{ }}and{\text{ }}n' = n - 1 \\
So{\text{ }}by{\text{ }} using {\text{ }} the {\text{ }} formula {\text{ }}of{\text{ }}sum{\text{ }}of{\text{ }}an{\text{ }}AP{\text{ }}we{\text{ }}get, \\
{a_n} - 1 = \dfrac{{(n - 1)(2(4) + (n - 1 - 1)3)}}{2} \\
On{\text{ }}simplifying{\text{ }}we{\text{ }}get, \\
\Rightarrow {a_n} - 1 = \dfrac{{(n - 1)(4 + 3n - 2)}}{2} = \dfrac{{(n - 1)(3n + 2)}}{2} \\
\Rightarrow {a_n} = \dfrac{{3{n^2} + 2n - 3n - 2 + 2}}{2} = \dfrac{{3{n^2} - n}}{2} \\
$
Therefore sum up to the nth term of the given sequence is
$
{S_n} = \sum\limits_{i = 1}^n {{a_i}} = \sum\limits_{i = 1}^n {\dfrac{{3{i^2} - i}}{2}} \\
\Rightarrow {S_n} = \dfrac{3}{2}\sum {{i^2}} - \dfrac{1}{2}\sum i \\
Now{\text{ }}we{\text{ }}use{\text{ }}the{\text{ }}fact{\text{ }}that{\text{ }}\sum {{i^2}} = \dfrac{{n(n + 1)(2n + 1)}}{6}and{\text{ }}\sum i = \dfrac{{n(n + 1)}}{2}, \\
\Rightarrow {S_n} = \dfrac{3}{2}*\dfrac{{n(n + 1)(2n + 1)}}{6} - \dfrac{1}{2}*\dfrac{{n(n + 1)}}{2} \\
\Rightarrow {S_n} = \dfrac{{n(n + 1)(2n + 1)}}{4} - \dfrac{{n(n + 1)}}{4} \\
On{\text{ }}simplifying{\text{ }}further{\text{ }}we{\text{ }}get, \\
\Rightarrow {S_n} = \dfrac{{n(n + 1)}}{4}\left[ {2n + 1 - 1} \right] = \dfrac{{{n^2}(n + 1)}}{2} \\
$
Hence, sum up to n terms of the series 1+5+12+22+35.... is given by $\dfrac{{{n^2}(n + 1)}}{2}$
Note: Apparently, the terms of the given sequence have no pattern. Now, note that the differences of the terms of the given sequence are in arithmetic progression. Using this, find the closed expression for the nth term of the sequence first. Then calculate the sum up to nth term
${S_n} = \sum\limits_{i = 1}^n {{a_i}} $
${S_n} = \sum\limits_{i = 1}^n {{a_i}} $
Complete step-by-step answer:
The terms of the given sequence are
$
{a_1} = 1 \\
{a_2} = 5 \\
{a_3} = 12 \\
\vdots \\
$
We see their differences are in arithmetic progression with first term 4 and common difference 3, i.e.
$
{\text{ }}{{{a}}_2} - {a_1} = 4 \\
{}_ + {{{a}}_3} - {{{a}}_2} = 7 \\
{}_ + {{{a}}_4} - {{{a}}_3} = 10 \\
\vdots \\
\vdots \\
{}_ + {a_n} - {{{a}}_{n - 1}} = 3n - 2 \\
$
Adding all the equations, we get
$
{a_n} - {a_1} = 4 + 7 + 10 + ...... + (3n - 2) \\
As{\text{ }}4 + 7 + 10 + ...... + (3n - 2){\text{ }}are{\text{ }}in{\text{ }}AP \\
where{\text{ }}a = 4,{\text{ }}d = 3{\text{ }}and{\text{ }}n' = n - 1 \\
So{\text{ }}by{\text{ }} using {\text{ }} the {\text{ }} formula {\text{ }}of{\text{ }}sum{\text{ }}of{\text{ }}an{\text{ }}AP{\text{ }}we{\text{ }}get, \\
{a_n} - 1 = \dfrac{{(n - 1)(2(4) + (n - 1 - 1)3)}}{2} \\
On{\text{ }}simplifying{\text{ }}we{\text{ }}get, \\
\Rightarrow {a_n} - 1 = \dfrac{{(n - 1)(4 + 3n - 2)}}{2} = \dfrac{{(n - 1)(3n + 2)}}{2} \\
\Rightarrow {a_n} = \dfrac{{3{n^2} + 2n - 3n - 2 + 2}}{2} = \dfrac{{3{n^2} - n}}{2} \\
$
Therefore sum up to the nth term of the given sequence is
$
{S_n} = \sum\limits_{i = 1}^n {{a_i}} = \sum\limits_{i = 1}^n {\dfrac{{3{i^2} - i}}{2}} \\
\Rightarrow {S_n} = \dfrac{3}{2}\sum {{i^2}} - \dfrac{1}{2}\sum i \\
Now{\text{ }}we{\text{ }}use{\text{ }}the{\text{ }}fact{\text{ }}that{\text{ }}\sum {{i^2}} = \dfrac{{n(n + 1)(2n + 1)}}{6}and{\text{ }}\sum i = \dfrac{{n(n + 1)}}{2}, \\
\Rightarrow {S_n} = \dfrac{3}{2}*\dfrac{{n(n + 1)(2n + 1)}}{6} - \dfrac{1}{2}*\dfrac{{n(n + 1)}}{2} \\
\Rightarrow {S_n} = \dfrac{{n(n + 1)(2n + 1)}}{4} - \dfrac{{n(n + 1)}}{4} \\
On{\text{ }}simplifying{\text{ }}further{\text{ }}we{\text{ }}get, \\
\Rightarrow {S_n} = \dfrac{{n(n + 1)}}{4}\left[ {2n + 1 - 1} \right] = \dfrac{{{n^2}(n + 1)}}{2} \\
$
Hence, sum up to n terms of the series 1+5+12+22+35.... is given by $\dfrac{{{n^2}(n + 1)}}{2}$
Note: Apparently, the terms of the given sequence have no pattern. Now, note that the differences of the terms of the given sequence are in arithmetic progression. Using this, find the closed expression for the nth term of the sequence first. Then calculate the sum up to nth term
${S_n} = \sum\limits_{i = 1}^n {{a_i}} $
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE