
Find \[\overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right),\] if \[\overrightarrow{a}=2\widehat{i}+\widehat{j}+3\widehat{k},\overrightarrow{b}=\widehat{i}+2\widehat{j}+\widehat{k},\overrightarrow{c}=3\widehat{i}+\widehat{j}+2\widehat{k}.\]
Answer
590.7k+ views
Hint: We are asked to find the dot product of vector a with \[\overrightarrow{b}\times \overrightarrow{c}.\] First, we will find the cross product of \[\overrightarrow{b}\times \overrightarrow{c}\] using the formula of \[A={{a}_{1}}i+{{b}_{i}}j+{{c}_{1}}k\] and \[B={{a}_{2}}i+{{b}_{2}}j+{{c}_{2}}k.\] Once we find \[\overrightarrow{A}\times \overrightarrow{B}=\left| \begin{matrix}
i & j & k \\
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
\end{matrix} \right|,\] then using \[\overrightarrow{b}\times \overrightarrow{c}\] we will find the dot product of \[\overrightarrow{b}\times \overrightarrow{c}\] with \[\overrightarrow{a}\] using \[A.B={{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}\] and then we will get our required solution.
Complete step by step answer:
We are given \[\overrightarrow{a}=2\widehat{i}+\widehat{j}+3\widehat{k},\overrightarrow{b}=\widehat{i}+2\widehat{j}+\widehat{k},\overrightarrow{c}=3\widehat{i}+\widehat{j}+2\widehat{k}.\] We are asked to find \[\overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right).\] We will first find the cross product of \[\overrightarrow{b}\] and \[\overrightarrow{c}\] first and then we will solve further.
We know that for any \[X=x\widehat{i}+y\widehat{j}+z\widehat{k}\] and \[Y=a\widehat{i}+b\widehat{j}+c\widehat{k}\] the cross product is given as,
\[\overrightarrow{X}\times \overrightarrow{Y}=\left| \begin{matrix}
i & j & k \\
x & y & z \\
a & b & c \\
\end{matrix} \right|\]
So, for \[\overrightarrow{b}=\widehat{i}+2\widehat{j}+\widehat{k},\overrightarrow{c}=3\widehat{i}+\widehat{j}+2\widehat{k},\] we will have,
\[\overrightarrow{b}\times \overrightarrow{c}=\left| \begin{matrix}
i & j & k \\
1 & 2 & 1 \\
3 & 1 & 2 \\
\end{matrix} \right|\]
Now, we will expand the determinant along the row 1, we will get,
\[\overrightarrow{b}\times \overrightarrow{c}=i\left( 2\times 2-1\times 1 \right)-j\left( 1\times 2-3\times 1 \right)+k\left( 1\times 1-3\times 2 \right)\]
\[\Rightarrow \overrightarrow{b}\times \overrightarrow{c}=i\left( 4-1 \right)-j\left( 2-3 \right)+k\left( 1-6 \right)\]
Simplifying further, we get,
\[\Rightarrow \overrightarrow{b}\times \overrightarrow{c}=3i+j-5k\]
Now, we will find the dot product of \[\overrightarrow{b}\times \overrightarrow{c}\] with \[\overrightarrow{a}.\] We know that for \[\alpha =x\widehat{i}+y\widehat{j}+z\widehat{k}\] and \[\beta =a\widehat{i}+b\widehat{j}+c\widehat{k}.\]
\[\alpha .\beta =x.a+y.b+z.c\]
So for, \[\overrightarrow{a}=2\widehat{i}+\widehat{j}+3\widehat{k}\] and \[\overrightarrow{b}\times \overrightarrow{c}=3i+j-5k,\] we have,
\[\overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left( 2\widehat{i}+\widehat{j}+3\widehat{k} \right).\left( 3i+j-5k \right)\]
\[\Rightarrow \overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=2.3+1.1+3.\left( -5 \right)\]
Simplifying, we get,
\[\Rightarrow \overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=6+1-15\]
\[\Rightarrow \overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=-8\]
So, we will get \[\overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=-8\] as our answer.
Note: We can do this in an alternate method. We know that for any \[X.\left( \overrightarrow{Y}\times \overrightarrow{Z} \right)\] is given as,
\[X.\left( \overrightarrow{Y}\times \overrightarrow{Z} \right)=\left| \begin{matrix}
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right|\]
So for, \[\overrightarrow{a}=2\widehat{i}+\widehat{j}+3\widehat{k},\overrightarrow{b}=\widehat{i}+2\widehat{j}+\widehat{k},\overrightarrow{c}=3\widehat{i}+\widehat{j}+2\widehat{k},\]
\[a.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left| \begin{matrix}
2 & 1 & 3 \\
1 & 2 & 1 \\
3 & 1 & 2 \\
\end{matrix} \right|\]
Expanding along row 1, we will get,
\[\Rightarrow a.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=2\left( 2\times 2-1\times 1 \right)-1\left( 1\times 2-3\times 1 \right)+3\left( 1\times 1-3\times 2 \right)\]
\[\Rightarrow a.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=2\left( 4-1 \right)-1\left( 2-3 \right)+3\left( 1-6 \right)\]
\[\Rightarrow a.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=2\left( 3 \right)-1\left( -1 \right)+3\left( -5 \right)\]
\[\Rightarrow a.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=6+1-15\]
\[\Rightarrow a.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=-8\]
i & j & k \\
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
\end{matrix} \right|,\] then using \[\overrightarrow{b}\times \overrightarrow{c}\] we will find the dot product of \[\overrightarrow{b}\times \overrightarrow{c}\] with \[\overrightarrow{a}\] using \[A.B={{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}\] and then we will get our required solution.
Complete step by step answer:
We are given \[\overrightarrow{a}=2\widehat{i}+\widehat{j}+3\widehat{k},\overrightarrow{b}=\widehat{i}+2\widehat{j}+\widehat{k},\overrightarrow{c}=3\widehat{i}+\widehat{j}+2\widehat{k}.\] We are asked to find \[\overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right).\] We will first find the cross product of \[\overrightarrow{b}\] and \[\overrightarrow{c}\] first and then we will solve further.
We know that for any \[X=x\widehat{i}+y\widehat{j}+z\widehat{k}\] and \[Y=a\widehat{i}+b\widehat{j}+c\widehat{k}\] the cross product is given as,
\[\overrightarrow{X}\times \overrightarrow{Y}=\left| \begin{matrix}
i & j & k \\
x & y & z \\
a & b & c \\
\end{matrix} \right|\]
So, for \[\overrightarrow{b}=\widehat{i}+2\widehat{j}+\widehat{k},\overrightarrow{c}=3\widehat{i}+\widehat{j}+2\widehat{k},\] we will have,
\[\overrightarrow{b}\times \overrightarrow{c}=\left| \begin{matrix}
i & j & k \\
1 & 2 & 1 \\
3 & 1 & 2 \\
\end{matrix} \right|\]
Now, we will expand the determinant along the row 1, we will get,
\[\overrightarrow{b}\times \overrightarrow{c}=i\left( 2\times 2-1\times 1 \right)-j\left( 1\times 2-3\times 1 \right)+k\left( 1\times 1-3\times 2 \right)\]
\[\Rightarrow \overrightarrow{b}\times \overrightarrow{c}=i\left( 4-1 \right)-j\left( 2-3 \right)+k\left( 1-6 \right)\]
Simplifying further, we get,
\[\Rightarrow \overrightarrow{b}\times \overrightarrow{c}=3i+j-5k\]
Now, we will find the dot product of \[\overrightarrow{b}\times \overrightarrow{c}\] with \[\overrightarrow{a}.\] We know that for \[\alpha =x\widehat{i}+y\widehat{j}+z\widehat{k}\] and \[\beta =a\widehat{i}+b\widehat{j}+c\widehat{k}.\]
\[\alpha .\beta =x.a+y.b+z.c\]
So for, \[\overrightarrow{a}=2\widehat{i}+\widehat{j}+3\widehat{k}\] and \[\overrightarrow{b}\times \overrightarrow{c}=3i+j-5k,\] we have,
\[\overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left( 2\widehat{i}+\widehat{j}+3\widehat{k} \right).\left( 3i+j-5k \right)\]
\[\Rightarrow \overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=2.3+1.1+3.\left( -5 \right)\]
Simplifying, we get,
\[\Rightarrow \overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=6+1-15\]
\[\Rightarrow \overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=-8\]
So, we will get \[\overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=-8\] as our answer.
Note: We can do this in an alternate method. We know that for any \[X.\left( \overrightarrow{Y}\times \overrightarrow{Z} \right)\] is given as,
\[X.\left( \overrightarrow{Y}\times \overrightarrow{Z} \right)=\left| \begin{matrix}
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right|\]
So for, \[\overrightarrow{a}=2\widehat{i}+\widehat{j}+3\widehat{k},\overrightarrow{b}=\widehat{i}+2\widehat{j}+\widehat{k},\overrightarrow{c}=3\widehat{i}+\widehat{j}+2\widehat{k},\]
\[a.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left| \begin{matrix}
2 & 1 & 3 \\
1 & 2 & 1 \\
3 & 1 & 2 \\
\end{matrix} \right|\]
Expanding along row 1, we will get,
\[\Rightarrow a.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=2\left( 2\times 2-1\times 1 \right)-1\left( 1\times 2-3\times 1 \right)+3\left( 1\times 1-3\times 2 \right)\]
\[\Rightarrow a.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=2\left( 4-1 \right)-1\left( 2-3 \right)+3\left( 1-6 \right)\]
\[\Rightarrow a.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=2\left( 3 \right)-1\left( -1 \right)+3\left( -5 \right)\]
\[\Rightarrow a.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=6+1-15\]
\[\Rightarrow a.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=-8\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

