
Find \[\overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right),\] if \[\overrightarrow{a}=2\widehat{i}+\widehat{j}+3\widehat{k},\overrightarrow{b}=\widehat{i}+2\widehat{j}+\widehat{k},\overrightarrow{c}=3\widehat{i}+\widehat{j}+2\widehat{k}.\]
Answer
577.2k+ views
Hint: We are asked to find the dot product of vector a with \[\overrightarrow{b}\times \overrightarrow{c}.\] First, we will find the cross product of \[\overrightarrow{b}\times \overrightarrow{c}\] using the formula of \[A={{a}_{1}}i+{{b}_{i}}j+{{c}_{1}}k\] and \[B={{a}_{2}}i+{{b}_{2}}j+{{c}_{2}}k.\] Once we find \[\overrightarrow{A}\times \overrightarrow{B}=\left| \begin{matrix}
i & j & k \\
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
\end{matrix} \right|,\] then using \[\overrightarrow{b}\times \overrightarrow{c}\] we will find the dot product of \[\overrightarrow{b}\times \overrightarrow{c}\] with \[\overrightarrow{a}\] using \[A.B={{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}\] and then we will get our required solution.
Complete step by step answer:
We are given \[\overrightarrow{a}=2\widehat{i}+\widehat{j}+3\widehat{k},\overrightarrow{b}=\widehat{i}+2\widehat{j}+\widehat{k},\overrightarrow{c}=3\widehat{i}+\widehat{j}+2\widehat{k}.\] We are asked to find \[\overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right).\] We will first find the cross product of \[\overrightarrow{b}\] and \[\overrightarrow{c}\] first and then we will solve further.
We know that for any \[X=x\widehat{i}+y\widehat{j}+z\widehat{k}\] and \[Y=a\widehat{i}+b\widehat{j}+c\widehat{k}\] the cross product is given as,
\[\overrightarrow{X}\times \overrightarrow{Y}=\left| \begin{matrix}
i & j & k \\
x & y & z \\
a & b & c \\
\end{matrix} \right|\]
So, for \[\overrightarrow{b}=\widehat{i}+2\widehat{j}+\widehat{k},\overrightarrow{c}=3\widehat{i}+\widehat{j}+2\widehat{k},\] we will have,
\[\overrightarrow{b}\times \overrightarrow{c}=\left| \begin{matrix}
i & j & k \\
1 & 2 & 1 \\
3 & 1 & 2 \\
\end{matrix} \right|\]
Now, we will expand the determinant along the row 1, we will get,
\[\overrightarrow{b}\times \overrightarrow{c}=i\left( 2\times 2-1\times 1 \right)-j\left( 1\times 2-3\times 1 \right)+k\left( 1\times 1-3\times 2 \right)\]
\[\Rightarrow \overrightarrow{b}\times \overrightarrow{c}=i\left( 4-1 \right)-j\left( 2-3 \right)+k\left( 1-6 \right)\]
Simplifying further, we get,
\[\Rightarrow \overrightarrow{b}\times \overrightarrow{c}=3i+j-5k\]
Now, we will find the dot product of \[\overrightarrow{b}\times \overrightarrow{c}\] with \[\overrightarrow{a}.\] We know that for \[\alpha =x\widehat{i}+y\widehat{j}+z\widehat{k}\] and \[\beta =a\widehat{i}+b\widehat{j}+c\widehat{k}.\]
\[\alpha .\beta =x.a+y.b+z.c\]
So for, \[\overrightarrow{a}=2\widehat{i}+\widehat{j}+3\widehat{k}\] and \[\overrightarrow{b}\times \overrightarrow{c}=3i+j-5k,\] we have,
\[\overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left( 2\widehat{i}+\widehat{j}+3\widehat{k} \right).\left( 3i+j-5k \right)\]
\[\Rightarrow \overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=2.3+1.1+3.\left( -5 \right)\]
Simplifying, we get,
\[\Rightarrow \overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=6+1-15\]
\[\Rightarrow \overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=-8\]
So, we will get \[\overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=-8\] as our answer.
Note: We can do this in an alternate method. We know that for any \[X.\left( \overrightarrow{Y}\times \overrightarrow{Z} \right)\] is given as,
\[X.\left( \overrightarrow{Y}\times \overrightarrow{Z} \right)=\left| \begin{matrix}
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right|\]
So for, \[\overrightarrow{a}=2\widehat{i}+\widehat{j}+3\widehat{k},\overrightarrow{b}=\widehat{i}+2\widehat{j}+\widehat{k},\overrightarrow{c}=3\widehat{i}+\widehat{j}+2\widehat{k},\]
\[a.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left| \begin{matrix}
2 & 1 & 3 \\
1 & 2 & 1 \\
3 & 1 & 2 \\
\end{matrix} \right|\]
Expanding along row 1, we will get,
\[\Rightarrow a.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=2\left( 2\times 2-1\times 1 \right)-1\left( 1\times 2-3\times 1 \right)+3\left( 1\times 1-3\times 2 \right)\]
\[\Rightarrow a.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=2\left( 4-1 \right)-1\left( 2-3 \right)+3\left( 1-6 \right)\]
\[\Rightarrow a.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=2\left( 3 \right)-1\left( -1 \right)+3\left( -5 \right)\]
\[\Rightarrow a.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=6+1-15\]
\[\Rightarrow a.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=-8\]
i & j & k \\
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
\end{matrix} \right|,\] then using \[\overrightarrow{b}\times \overrightarrow{c}\] we will find the dot product of \[\overrightarrow{b}\times \overrightarrow{c}\] with \[\overrightarrow{a}\] using \[A.B={{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}\] and then we will get our required solution.
Complete step by step answer:
We are given \[\overrightarrow{a}=2\widehat{i}+\widehat{j}+3\widehat{k},\overrightarrow{b}=\widehat{i}+2\widehat{j}+\widehat{k},\overrightarrow{c}=3\widehat{i}+\widehat{j}+2\widehat{k}.\] We are asked to find \[\overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right).\] We will first find the cross product of \[\overrightarrow{b}\] and \[\overrightarrow{c}\] first and then we will solve further.
We know that for any \[X=x\widehat{i}+y\widehat{j}+z\widehat{k}\] and \[Y=a\widehat{i}+b\widehat{j}+c\widehat{k}\] the cross product is given as,
\[\overrightarrow{X}\times \overrightarrow{Y}=\left| \begin{matrix}
i & j & k \\
x & y & z \\
a & b & c \\
\end{matrix} \right|\]
So, for \[\overrightarrow{b}=\widehat{i}+2\widehat{j}+\widehat{k},\overrightarrow{c}=3\widehat{i}+\widehat{j}+2\widehat{k},\] we will have,
\[\overrightarrow{b}\times \overrightarrow{c}=\left| \begin{matrix}
i & j & k \\
1 & 2 & 1 \\
3 & 1 & 2 \\
\end{matrix} \right|\]
Now, we will expand the determinant along the row 1, we will get,
\[\overrightarrow{b}\times \overrightarrow{c}=i\left( 2\times 2-1\times 1 \right)-j\left( 1\times 2-3\times 1 \right)+k\left( 1\times 1-3\times 2 \right)\]
\[\Rightarrow \overrightarrow{b}\times \overrightarrow{c}=i\left( 4-1 \right)-j\left( 2-3 \right)+k\left( 1-6 \right)\]
Simplifying further, we get,
\[\Rightarrow \overrightarrow{b}\times \overrightarrow{c}=3i+j-5k\]
Now, we will find the dot product of \[\overrightarrow{b}\times \overrightarrow{c}\] with \[\overrightarrow{a}.\] We know that for \[\alpha =x\widehat{i}+y\widehat{j}+z\widehat{k}\] and \[\beta =a\widehat{i}+b\widehat{j}+c\widehat{k}.\]
\[\alpha .\beta =x.a+y.b+z.c\]
So for, \[\overrightarrow{a}=2\widehat{i}+\widehat{j}+3\widehat{k}\] and \[\overrightarrow{b}\times \overrightarrow{c}=3i+j-5k,\] we have,
\[\overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left( 2\widehat{i}+\widehat{j}+3\widehat{k} \right).\left( 3i+j-5k \right)\]
\[\Rightarrow \overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=2.3+1.1+3.\left( -5 \right)\]
Simplifying, we get,
\[\Rightarrow \overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=6+1-15\]
\[\Rightarrow \overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=-8\]
So, we will get \[\overrightarrow{a}.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=-8\] as our answer.
Note: We can do this in an alternate method. We know that for any \[X.\left( \overrightarrow{Y}\times \overrightarrow{Z} \right)\] is given as,
\[X.\left( \overrightarrow{Y}\times \overrightarrow{Z} \right)=\left| \begin{matrix}
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right|\]
So for, \[\overrightarrow{a}=2\widehat{i}+\widehat{j}+3\widehat{k},\overrightarrow{b}=\widehat{i}+2\widehat{j}+\widehat{k},\overrightarrow{c}=3\widehat{i}+\widehat{j}+2\widehat{k},\]
\[a.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=\left| \begin{matrix}
2 & 1 & 3 \\
1 & 2 & 1 \\
3 & 1 & 2 \\
\end{matrix} \right|\]
Expanding along row 1, we will get,
\[\Rightarrow a.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=2\left( 2\times 2-1\times 1 \right)-1\left( 1\times 2-3\times 1 \right)+3\left( 1\times 1-3\times 2 \right)\]
\[\Rightarrow a.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=2\left( 4-1 \right)-1\left( 2-3 \right)+3\left( 1-6 \right)\]
\[\Rightarrow a.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=2\left( 3 \right)-1\left( -1 \right)+3\left( -5 \right)\]
\[\Rightarrow a.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=6+1-15\]
\[\Rightarrow a.\left( \overrightarrow{b}\times \overrightarrow{c} \right)=-8\]
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

