
Find out the sum of the series
$
\dfrac{1}{{1 \times 2}}{}^{25}{C_0} + \dfrac{1}{{2 \times 3}}{}^{25}{C_1} + \dfrac{1}{{3 \times 4}}{}^{25}{C_2} + ............ + \dfrac{1}{{26 \times 27}}{}^{25}{C_{25}} \\
{\text{a}}{\text{. }}\dfrac{{{2^{27}} - 1}}{{26 \times 27}} \\
{\text{b}}{\text{. }}\dfrac{{{2^{27}} - 28}}{{26 \times 27}} \\
{\text{c}}{\text{. }}\dfrac{1}{2}\left( {\dfrac{{{2^{26}} - 1}}{{26 \times 27}}} \right) \\
{\text{d}}{\text{. }}\dfrac{{{2^{26}} - 1}}{{52}} \\
$
Answer
625.2k+ views
Hint: - Use${\left( {1 + x} \right)^{25}} = {}^{25}{C_0} + {}^{25}{C_1}x + {}^{25}{C_2}{x^2} + ................. + {}^{25}{C_{25}}{x^{25}}$, then apply integration on both sides with limit 0 to $x$
According to Binomial Theorem the expansion of ${\left( {1 + x} \right)^{25}}$is
${\left( {1 + x} \right)^{25}} = {}^{25}{C_0} + {}^{25}{C_1}x + {}^{25}{C_2}{x^2} + ................. + {}^{25}{C_{25}}{x^{25}}...........\left( 1 \right)$
Integrate equation 1 w.r.t.$x$With limit 0 to $x$
$\int\limits_0^x {{{\left( {1 + x} \right)}^{25}}dx} = \int\limits_0^x {\left( {{}^{25}{C_0} + {}^{25}{C_1}x + {}^{25}{C_2}{x^2} + ................. + {}^{25}{C_{25}}{x^{25}}} \right)dx} $
Let, $\left( {1 + x} \right) = t...................\left( 2 \right)$
So when
$
x = 0 \Rightarrow t = 1 + 0 = 1 \\
x = x \Rightarrow t = 1 + x \\
$
Now, differentiate equation 2 w.r.t.$x$
$ \Rightarrow 0 + dx = dt \Rightarrow dx = dt$
Substitute these value in equation 1
\[\int\limits_1^{1 + x} {{t^{25}}dt} = \int\limits_0^x {\left( {{}^{25}{C_0} + {}^{25}{C_1}x + {}^{25}{C_2}{x^2} + ................. + {}^{25}{C_{25}}{x^{25}}} \right)dx} \]
Now integrate this equation as you know $\int {{t^n}dt = \left[ {\dfrac{{{t^{n + 1}}}}{{n + 1}}} \right]} $
\[ \Rightarrow \left[ {\dfrac{{{t^{26}}}}{{26}}} \right]_1^{1 + x} = \left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}}} \right]_o^x\]
Now apply integrating limit
\[
\left[ {\dfrac{{{{\left( {1 + x} \right)}^{26}}}}{{26}} - \dfrac{1}{{26}}} \right] = \left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}} - 0 - 0 - 0} \right] \\
\left[ {\dfrac{{{{\left( {1 + x} \right)}^{26}}}}{{26}} - \dfrac{1}{{26}}} \right] = \left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}}} \right]..............\left( 3 \right) \\
\]
Now again integrate equation 3 w.r.t.$x$From limit 0 to 1.
\[\int\limits_0^1 {\left[ {\dfrac{{{{\left( {1 + x} \right)}^{26}}}}{{26}} - \dfrac{1}{{26}}} \right]dx} = \int\limits_0^1 {\left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}}} \right]} dx\]
Let, $\left( {1 + x} \right) = t...................\left( 4 \right)$
So when
$
x = 0 \Rightarrow t = 1 + 0 = 1 \\
x = 1 \Rightarrow t = 1 + 1 = 2 \\
$
Now, differentiate equation 4 w.r.t.$x$
$ \Rightarrow 0 + dx = dt \Rightarrow dx = dt$
Substitute these value in equation 3
\[\int\limits_1^2 {\left[ {\dfrac{{{t^{26}}}}{{26}} - \dfrac{1}{{26}}} \right]dt} = \int\limits_0^1 {\left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}}} \right]} dx\]
Now integrate this equation as you know $\int {{t^n}dt = \left[ {\dfrac{{{t^{n + 1}}}}{{n + 1}}} \right]} $
$\left[ {\dfrac{{{t^{27}}}}{{27 \times 26}} - \dfrac{1}{{26}}} \right]_1^2 = \left[ {{}^{25}{C_0}\dfrac{{{x^2}}}{2} + {}^{25}{C_1}\dfrac{{{x^3}}}{{2 \times 3}} + {}^{25}{C_2}\dfrac{{{x^4}}}{{3 \times 4}} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{27}}}}{{26 \times 27}}} \right]_0^1$
Now apply integrating limit
$
\left[ {\dfrac{{{2^{27}}}}{{27 \times 26}} - \dfrac{1}{{26}} - \left( {\dfrac{{{1^{27}}}}{{27 \times 26}}} \right)} \right] = \left[ {{}^{25}{C_0}\dfrac{1}{2} + {}^{25}{C_1}\dfrac{1}{{2 \times 3}} + {}^{25}{C_2}\dfrac{1}{{3 \times 4}} + ................. + {}^{25}{C_{25}}\dfrac{1}{{26 \times 27}} - 0 - 0 - 0} \right] \\
\Rightarrow \left[ {\dfrac{{{2^{27}} - 28}}{{27 \times 26}}} \right] = \dfrac{1}{{1 \times 2}}{}^{25}{C_0} + \dfrac{1}{{2 \times 3}}{}^{25}{C_1} + \dfrac{1}{{3 \times 4}}{}^{25}{C_2} + ............ + \dfrac{1}{{26 \times 27}}{}^{25}{C_{25}} \\
$
Hence, option (b) is correct.
Note: - Whenever we face such type of problem the key concept we have to remember is that always remember the Binomial expansion of${\left( {1 + x} \right)^n}$, then integrate the expansion w.r.t.$x$ With limit 0 to x, then again integrate w.r.t.$x$with limit 0 to 1, we will get the required answer.
According to Binomial Theorem the expansion of ${\left( {1 + x} \right)^{25}}$is
${\left( {1 + x} \right)^{25}} = {}^{25}{C_0} + {}^{25}{C_1}x + {}^{25}{C_2}{x^2} + ................. + {}^{25}{C_{25}}{x^{25}}...........\left( 1 \right)$
Integrate equation 1 w.r.t.$x$With limit 0 to $x$
$\int\limits_0^x {{{\left( {1 + x} \right)}^{25}}dx} = \int\limits_0^x {\left( {{}^{25}{C_0} + {}^{25}{C_1}x + {}^{25}{C_2}{x^2} + ................. + {}^{25}{C_{25}}{x^{25}}} \right)dx} $
Let, $\left( {1 + x} \right) = t...................\left( 2 \right)$
So when
$
x = 0 \Rightarrow t = 1 + 0 = 1 \\
x = x \Rightarrow t = 1 + x \\
$
Now, differentiate equation 2 w.r.t.$x$
$ \Rightarrow 0 + dx = dt \Rightarrow dx = dt$
Substitute these value in equation 1
\[\int\limits_1^{1 + x} {{t^{25}}dt} = \int\limits_0^x {\left( {{}^{25}{C_0} + {}^{25}{C_1}x + {}^{25}{C_2}{x^2} + ................. + {}^{25}{C_{25}}{x^{25}}} \right)dx} \]
Now integrate this equation as you know $\int {{t^n}dt = \left[ {\dfrac{{{t^{n + 1}}}}{{n + 1}}} \right]} $
\[ \Rightarrow \left[ {\dfrac{{{t^{26}}}}{{26}}} \right]_1^{1 + x} = \left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}}} \right]_o^x\]
Now apply integrating limit
\[
\left[ {\dfrac{{{{\left( {1 + x} \right)}^{26}}}}{{26}} - \dfrac{1}{{26}}} \right] = \left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}} - 0 - 0 - 0} \right] \\
\left[ {\dfrac{{{{\left( {1 + x} \right)}^{26}}}}{{26}} - \dfrac{1}{{26}}} \right] = \left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}}} \right]..............\left( 3 \right) \\
\]
Now again integrate equation 3 w.r.t.$x$From limit 0 to 1.
\[\int\limits_0^1 {\left[ {\dfrac{{{{\left( {1 + x} \right)}^{26}}}}{{26}} - \dfrac{1}{{26}}} \right]dx} = \int\limits_0^1 {\left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}}} \right]} dx\]
Let, $\left( {1 + x} \right) = t...................\left( 4 \right)$
So when
$
x = 0 \Rightarrow t = 1 + 0 = 1 \\
x = 1 \Rightarrow t = 1 + 1 = 2 \\
$
Now, differentiate equation 4 w.r.t.$x$
$ \Rightarrow 0 + dx = dt \Rightarrow dx = dt$
Substitute these value in equation 3
\[\int\limits_1^2 {\left[ {\dfrac{{{t^{26}}}}{{26}} - \dfrac{1}{{26}}} \right]dt} = \int\limits_0^1 {\left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}}} \right]} dx\]
Now integrate this equation as you know $\int {{t^n}dt = \left[ {\dfrac{{{t^{n + 1}}}}{{n + 1}}} \right]} $
$\left[ {\dfrac{{{t^{27}}}}{{27 \times 26}} - \dfrac{1}{{26}}} \right]_1^2 = \left[ {{}^{25}{C_0}\dfrac{{{x^2}}}{2} + {}^{25}{C_1}\dfrac{{{x^3}}}{{2 \times 3}} + {}^{25}{C_2}\dfrac{{{x^4}}}{{3 \times 4}} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{27}}}}{{26 \times 27}}} \right]_0^1$
Now apply integrating limit
$
\left[ {\dfrac{{{2^{27}}}}{{27 \times 26}} - \dfrac{1}{{26}} - \left( {\dfrac{{{1^{27}}}}{{27 \times 26}}} \right)} \right] = \left[ {{}^{25}{C_0}\dfrac{1}{2} + {}^{25}{C_1}\dfrac{1}{{2 \times 3}} + {}^{25}{C_2}\dfrac{1}{{3 \times 4}} + ................. + {}^{25}{C_{25}}\dfrac{1}{{26 \times 27}} - 0 - 0 - 0} \right] \\
\Rightarrow \left[ {\dfrac{{{2^{27}} - 28}}{{27 \times 26}}} \right] = \dfrac{1}{{1 \times 2}}{}^{25}{C_0} + \dfrac{1}{{2 \times 3}}{}^{25}{C_1} + \dfrac{1}{{3 \times 4}}{}^{25}{C_2} + ............ + \dfrac{1}{{26 \times 27}}{}^{25}{C_{25}} \\
$
Hence, option (b) is correct.
Note: - Whenever we face such type of problem the key concept we have to remember is that always remember the Binomial expansion of${\left( {1 + x} \right)^n}$, then integrate the expansion w.r.t.$x$ With limit 0 to x, then again integrate w.r.t.$x$with limit 0 to 1, we will get the required answer.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

