
Find out the sum of the series
$
\dfrac{1}{{1 \times 2}}{}^{25}{C_0} + \dfrac{1}{{2 \times 3}}{}^{25}{C_1} + \dfrac{1}{{3 \times 4}}{}^{25}{C_2} + ............ + \dfrac{1}{{26 \times 27}}{}^{25}{C_{25}} \\
{\text{a}}{\text{. }}\dfrac{{{2^{27}} - 1}}{{26 \times 27}} \\
{\text{b}}{\text{. }}\dfrac{{{2^{27}} - 28}}{{26 \times 27}} \\
{\text{c}}{\text{. }}\dfrac{1}{2}\left( {\dfrac{{{2^{26}} - 1}}{{26 \times 27}}} \right) \\
{\text{d}}{\text{. }}\dfrac{{{2^{26}} - 1}}{{52}} \\
$
Answer
609.3k+ views
Hint: - Use${\left( {1 + x} \right)^{25}} = {}^{25}{C_0} + {}^{25}{C_1}x + {}^{25}{C_2}{x^2} + ................. + {}^{25}{C_{25}}{x^{25}}$, then apply integration on both sides with limit 0 to $x$
According to Binomial Theorem the expansion of ${\left( {1 + x} \right)^{25}}$is
${\left( {1 + x} \right)^{25}} = {}^{25}{C_0} + {}^{25}{C_1}x + {}^{25}{C_2}{x^2} + ................. + {}^{25}{C_{25}}{x^{25}}...........\left( 1 \right)$
Integrate equation 1 w.r.t.$x$With limit 0 to $x$
$\int\limits_0^x {{{\left( {1 + x} \right)}^{25}}dx} = \int\limits_0^x {\left( {{}^{25}{C_0} + {}^{25}{C_1}x + {}^{25}{C_2}{x^2} + ................. + {}^{25}{C_{25}}{x^{25}}} \right)dx} $
Let, $\left( {1 + x} \right) = t...................\left( 2 \right)$
So when
$
x = 0 \Rightarrow t = 1 + 0 = 1 \\
x = x \Rightarrow t = 1 + x \\
$
Now, differentiate equation 2 w.r.t.$x$
$ \Rightarrow 0 + dx = dt \Rightarrow dx = dt$
Substitute these value in equation 1
\[\int\limits_1^{1 + x} {{t^{25}}dt} = \int\limits_0^x {\left( {{}^{25}{C_0} + {}^{25}{C_1}x + {}^{25}{C_2}{x^2} + ................. + {}^{25}{C_{25}}{x^{25}}} \right)dx} \]
Now integrate this equation as you know $\int {{t^n}dt = \left[ {\dfrac{{{t^{n + 1}}}}{{n + 1}}} \right]} $
\[ \Rightarrow \left[ {\dfrac{{{t^{26}}}}{{26}}} \right]_1^{1 + x} = \left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}}} \right]_o^x\]
Now apply integrating limit
\[
\left[ {\dfrac{{{{\left( {1 + x} \right)}^{26}}}}{{26}} - \dfrac{1}{{26}}} \right] = \left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}} - 0 - 0 - 0} \right] \\
\left[ {\dfrac{{{{\left( {1 + x} \right)}^{26}}}}{{26}} - \dfrac{1}{{26}}} \right] = \left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}}} \right]..............\left( 3 \right) \\
\]
Now again integrate equation 3 w.r.t.$x$From limit 0 to 1.
\[\int\limits_0^1 {\left[ {\dfrac{{{{\left( {1 + x} \right)}^{26}}}}{{26}} - \dfrac{1}{{26}}} \right]dx} = \int\limits_0^1 {\left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}}} \right]} dx\]
Let, $\left( {1 + x} \right) = t...................\left( 4 \right)$
So when
$
x = 0 \Rightarrow t = 1 + 0 = 1 \\
x = 1 \Rightarrow t = 1 + 1 = 2 \\
$
Now, differentiate equation 4 w.r.t.$x$
$ \Rightarrow 0 + dx = dt \Rightarrow dx = dt$
Substitute these value in equation 3
\[\int\limits_1^2 {\left[ {\dfrac{{{t^{26}}}}{{26}} - \dfrac{1}{{26}}} \right]dt} = \int\limits_0^1 {\left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}}} \right]} dx\]
Now integrate this equation as you know $\int {{t^n}dt = \left[ {\dfrac{{{t^{n + 1}}}}{{n + 1}}} \right]} $
$\left[ {\dfrac{{{t^{27}}}}{{27 \times 26}} - \dfrac{1}{{26}}} \right]_1^2 = \left[ {{}^{25}{C_0}\dfrac{{{x^2}}}{2} + {}^{25}{C_1}\dfrac{{{x^3}}}{{2 \times 3}} + {}^{25}{C_2}\dfrac{{{x^4}}}{{3 \times 4}} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{27}}}}{{26 \times 27}}} \right]_0^1$
Now apply integrating limit
$
\left[ {\dfrac{{{2^{27}}}}{{27 \times 26}} - \dfrac{1}{{26}} - \left( {\dfrac{{{1^{27}}}}{{27 \times 26}}} \right)} \right] = \left[ {{}^{25}{C_0}\dfrac{1}{2} + {}^{25}{C_1}\dfrac{1}{{2 \times 3}} + {}^{25}{C_2}\dfrac{1}{{3 \times 4}} + ................. + {}^{25}{C_{25}}\dfrac{1}{{26 \times 27}} - 0 - 0 - 0} \right] \\
\Rightarrow \left[ {\dfrac{{{2^{27}} - 28}}{{27 \times 26}}} \right] = \dfrac{1}{{1 \times 2}}{}^{25}{C_0} + \dfrac{1}{{2 \times 3}}{}^{25}{C_1} + \dfrac{1}{{3 \times 4}}{}^{25}{C_2} + ............ + \dfrac{1}{{26 \times 27}}{}^{25}{C_{25}} \\
$
Hence, option (b) is correct.
Note: - Whenever we face such type of problem the key concept we have to remember is that always remember the Binomial expansion of${\left( {1 + x} \right)^n}$, then integrate the expansion w.r.t.$x$ With limit 0 to x, then again integrate w.r.t.$x$with limit 0 to 1, we will get the required answer.
According to Binomial Theorem the expansion of ${\left( {1 + x} \right)^{25}}$is
${\left( {1 + x} \right)^{25}} = {}^{25}{C_0} + {}^{25}{C_1}x + {}^{25}{C_2}{x^2} + ................. + {}^{25}{C_{25}}{x^{25}}...........\left( 1 \right)$
Integrate equation 1 w.r.t.$x$With limit 0 to $x$
$\int\limits_0^x {{{\left( {1 + x} \right)}^{25}}dx} = \int\limits_0^x {\left( {{}^{25}{C_0} + {}^{25}{C_1}x + {}^{25}{C_2}{x^2} + ................. + {}^{25}{C_{25}}{x^{25}}} \right)dx} $
Let, $\left( {1 + x} \right) = t...................\left( 2 \right)$
So when
$
x = 0 \Rightarrow t = 1 + 0 = 1 \\
x = x \Rightarrow t = 1 + x \\
$
Now, differentiate equation 2 w.r.t.$x$
$ \Rightarrow 0 + dx = dt \Rightarrow dx = dt$
Substitute these value in equation 1
\[\int\limits_1^{1 + x} {{t^{25}}dt} = \int\limits_0^x {\left( {{}^{25}{C_0} + {}^{25}{C_1}x + {}^{25}{C_2}{x^2} + ................. + {}^{25}{C_{25}}{x^{25}}} \right)dx} \]
Now integrate this equation as you know $\int {{t^n}dt = \left[ {\dfrac{{{t^{n + 1}}}}{{n + 1}}} \right]} $
\[ \Rightarrow \left[ {\dfrac{{{t^{26}}}}{{26}}} \right]_1^{1 + x} = \left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}}} \right]_o^x\]
Now apply integrating limit
\[
\left[ {\dfrac{{{{\left( {1 + x} \right)}^{26}}}}{{26}} - \dfrac{1}{{26}}} \right] = \left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}} - 0 - 0 - 0} \right] \\
\left[ {\dfrac{{{{\left( {1 + x} \right)}^{26}}}}{{26}} - \dfrac{1}{{26}}} \right] = \left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}}} \right]..............\left( 3 \right) \\
\]
Now again integrate equation 3 w.r.t.$x$From limit 0 to 1.
\[\int\limits_0^1 {\left[ {\dfrac{{{{\left( {1 + x} \right)}^{26}}}}{{26}} - \dfrac{1}{{26}}} \right]dx} = \int\limits_0^1 {\left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}}} \right]} dx\]
Let, $\left( {1 + x} \right) = t...................\left( 4 \right)$
So when
$
x = 0 \Rightarrow t = 1 + 0 = 1 \\
x = 1 \Rightarrow t = 1 + 1 = 2 \\
$
Now, differentiate equation 4 w.r.t.$x$
$ \Rightarrow 0 + dx = dt \Rightarrow dx = dt$
Substitute these value in equation 3
\[\int\limits_1^2 {\left[ {\dfrac{{{t^{26}}}}{{26}} - \dfrac{1}{{26}}} \right]dt} = \int\limits_0^1 {\left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}}} \right]} dx\]
Now integrate this equation as you know $\int {{t^n}dt = \left[ {\dfrac{{{t^{n + 1}}}}{{n + 1}}} \right]} $
$\left[ {\dfrac{{{t^{27}}}}{{27 \times 26}} - \dfrac{1}{{26}}} \right]_1^2 = \left[ {{}^{25}{C_0}\dfrac{{{x^2}}}{2} + {}^{25}{C_1}\dfrac{{{x^3}}}{{2 \times 3}} + {}^{25}{C_2}\dfrac{{{x^4}}}{{3 \times 4}} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{27}}}}{{26 \times 27}}} \right]_0^1$
Now apply integrating limit
$
\left[ {\dfrac{{{2^{27}}}}{{27 \times 26}} - \dfrac{1}{{26}} - \left( {\dfrac{{{1^{27}}}}{{27 \times 26}}} \right)} \right] = \left[ {{}^{25}{C_0}\dfrac{1}{2} + {}^{25}{C_1}\dfrac{1}{{2 \times 3}} + {}^{25}{C_2}\dfrac{1}{{3 \times 4}} + ................. + {}^{25}{C_{25}}\dfrac{1}{{26 \times 27}} - 0 - 0 - 0} \right] \\
\Rightarrow \left[ {\dfrac{{{2^{27}} - 28}}{{27 \times 26}}} \right] = \dfrac{1}{{1 \times 2}}{}^{25}{C_0} + \dfrac{1}{{2 \times 3}}{}^{25}{C_1} + \dfrac{1}{{3 \times 4}}{}^{25}{C_2} + ............ + \dfrac{1}{{26 \times 27}}{}^{25}{C_{25}} \\
$
Hence, option (b) is correct.
Note: - Whenever we face such type of problem the key concept we have to remember is that always remember the Binomial expansion of${\left( {1 + x} \right)^n}$, then integrate the expansion w.r.t.$x$ With limit 0 to x, then again integrate w.r.t.$x$with limit 0 to 1, we will get the required answer.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

