Answer
Verified
471.6k+ views
Hint: - Use${\left( {1 + x} \right)^{25}} = {}^{25}{C_0} + {}^{25}{C_1}x + {}^{25}{C_2}{x^2} + ................. + {}^{25}{C_{25}}{x^{25}}$, then apply integration on both sides with limit 0 to $x$
According to Binomial Theorem the expansion of ${\left( {1 + x} \right)^{25}}$is
${\left( {1 + x} \right)^{25}} = {}^{25}{C_0} + {}^{25}{C_1}x + {}^{25}{C_2}{x^2} + ................. + {}^{25}{C_{25}}{x^{25}}...........\left( 1 \right)$
Integrate equation 1 w.r.t.$x$With limit 0 to $x$
$\int\limits_0^x {{{\left( {1 + x} \right)}^{25}}dx} = \int\limits_0^x {\left( {{}^{25}{C_0} + {}^{25}{C_1}x + {}^{25}{C_2}{x^2} + ................. + {}^{25}{C_{25}}{x^{25}}} \right)dx} $
Let, $\left( {1 + x} \right) = t...................\left( 2 \right)$
So when
$
x = 0 \Rightarrow t = 1 + 0 = 1 \\
x = x \Rightarrow t = 1 + x \\
$
Now, differentiate equation 2 w.r.t.$x$
$ \Rightarrow 0 + dx = dt \Rightarrow dx = dt$
Substitute these value in equation 1
\[\int\limits_1^{1 + x} {{t^{25}}dt} = \int\limits_0^x {\left( {{}^{25}{C_0} + {}^{25}{C_1}x + {}^{25}{C_2}{x^2} + ................. + {}^{25}{C_{25}}{x^{25}}} \right)dx} \]
Now integrate this equation as you know $\int {{t^n}dt = \left[ {\dfrac{{{t^{n + 1}}}}{{n + 1}}} \right]} $
\[ \Rightarrow \left[ {\dfrac{{{t^{26}}}}{{26}}} \right]_1^{1 + x} = \left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}}} \right]_o^x\]
Now apply integrating limit
\[
\left[ {\dfrac{{{{\left( {1 + x} \right)}^{26}}}}{{26}} - \dfrac{1}{{26}}} \right] = \left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}} - 0 - 0 - 0} \right] \\
\left[ {\dfrac{{{{\left( {1 + x} \right)}^{26}}}}{{26}} - \dfrac{1}{{26}}} \right] = \left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}}} \right]..............\left( 3 \right) \\
\]
Now again integrate equation 3 w.r.t.$x$From limit 0 to 1.
\[\int\limits_0^1 {\left[ {\dfrac{{{{\left( {1 + x} \right)}^{26}}}}{{26}} - \dfrac{1}{{26}}} \right]dx} = \int\limits_0^1 {\left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}}} \right]} dx\]
Let, $\left( {1 + x} \right) = t...................\left( 4 \right)$
So when
$
x = 0 \Rightarrow t = 1 + 0 = 1 \\
x = 1 \Rightarrow t = 1 + 1 = 2 \\
$
Now, differentiate equation 4 w.r.t.$x$
$ \Rightarrow 0 + dx = dt \Rightarrow dx = dt$
Substitute these value in equation 3
\[\int\limits_1^2 {\left[ {\dfrac{{{t^{26}}}}{{26}} - \dfrac{1}{{26}}} \right]dt} = \int\limits_0^1 {\left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}}} \right]} dx\]
Now integrate this equation as you know $\int {{t^n}dt = \left[ {\dfrac{{{t^{n + 1}}}}{{n + 1}}} \right]} $
$\left[ {\dfrac{{{t^{27}}}}{{27 \times 26}} - \dfrac{1}{{26}}} \right]_1^2 = \left[ {{}^{25}{C_0}\dfrac{{{x^2}}}{2} + {}^{25}{C_1}\dfrac{{{x^3}}}{{2 \times 3}} + {}^{25}{C_2}\dfrac{{{x^4}}}{{3 \times 4}} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{27}}}}{{26 \times 27}}} \right]_0^1$
Now apply integrating limit
$
\left[ {\dfrac{{{2^{27}}}}{{27 \times 26}} - \dfrac{1}{{26}} - \left( {\dfrac{{{1^{27}}}}{{27 \times 26}}} \right)} \right] = \left[ {{}^{25}{C_0}\dfrac{1}{2} + {}^{25}{C_1}\dfrac{1}{{2 \times 3}} + {}^{25}{C_2}\dfrac{1}{{3 \times 4}} + ................. + {}^{25}{C_{25}}\dfrac{1}{{26 \times 27}} - 0 - 0 - 0} \right] \\
\Rightarrow \left[ {\dfrac{{{2^{27}} - 28}}{{27 \times 26}}} \right] = \dfrac{1}{{1 \times 2}}{}^{25}{C_0} + \dfrac{1}{{2 \times 3}}{}^{25}{C_1} + \dfrac{1}{{3 \times 4}}{}^{25}{C_2} + ............ + \dfrac{1}{{26 \times 27}}{}^{25}{C_{25}} \\
$
Hence, option (b) is correct.
Note: - Whenever we face such type of problem the key concept we have to remember is that always remember the Binomial expansion of${\left( {1 + x} \right)^n}$, then integrate the expansion w.r.t.$x$ With limit 0 to x, then again integrate w.r.t.$x$with limit 0 to 1, we will get the required answer.
According to Binomial Theorem the expansion of ${\left( {1 + x} \right)^{25}}$is
${\left( {1 + x} \right)^{25}} = {}^{25}{C_0} + {}^{25}{C_1}x + {}^{25}{C_2}{x^2} + ................. + {}^{25}{C_{25}}{x^{25}}...........\left( 1 \right)$
Integrate equation 1 w.r.t.$x$With limit 0 to $x$
$\int\limits_0^x {{{\left( {1 + x} \right)}^{25}}dx} = \int\limits_0^x {\left( {{}^{25}{C_0} + {}^{25}{C_1}x + {}^{25}{C_2}{x^2} + ................. + {}^{25}{C_{25}}{x^{25}}} \right)dx} $
Let, $\left( {1 + x} \right) = t...................\left( 2 \right)$
So when
$
x = 0 \Rightarrow t = 1 + 0 = 1 \\
x = x \Rightarrow t = 1 + x \\
$
Now, differentiate equation 2 w.r.t.$x$
$ \Rightarrow 0 + dx = dt \Rightarrow dx = dt$
Substitute these value in equation 1
\[\int\limits_1^{1 + x} {{t^{25}}dt} = \int\limits_0^x {\left( {{}^{25}{C_0} + {}^{25}{C_1}x + {}^{25}{C_2}{x^2} + ................. + {}^{25}{C_{25}}{x^{25}}} \right)dx} \]
Now integrate this equation as you know $\int {{t^n}dt = \left[ {\dfrac{{{t^{n + 1}}}}{{n + 1}}} \right]} $
\[ \Rightarrow \left[ {\dfrac{{{t^{26}}}}{{26}}} \right]_1^{1 + x} = \left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}}} \right]_o^x\]
Now apply integrating limit
\[
\left[ {\dfrac{{{{\left( {1 + x} \right)}^{26}}}}{{26}} - \dfrac{1}{{26}}} \right] = \left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}} - 0 - 0 - 0} \right] \\
\left[ {\dfrac{{{{\left( {1 + x} \right)}^{26}}}}{{26}} - \dfrac{1}{{26}}} \right] = \left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}}} \right]..............\left( 3 \right) \\
\]
Now again integrate equation 3 w.r.t.$x$From limit 0 to 1.
\[\int\limits_0^1 {\left[ {\dfrac{{{{\left( {1 + x} \right)}^{26}}}}{{26}} - \dfrac{1}{{26}}} \right]dx} = \int\limits_0^1 {\left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}}} \right]} dx\]
Let, $\left( {1 + x} \right) = t...................\left( 4 \right)$
So when
$
x = 0 \Rightarrow t = 1 + 0 = 1 \\
x = 1 \Rightarrow t = 1 + 1 = 2 \\
$
Now, differentiate equation 4 w.r.t.$x$
$ \Rightarrow 0 + dx = dt \Rightarrow dx = dt$
Substitute these value in equation 3
\[\int\limits_1^2 {\left[ {\dfrac{{{t^{26}}}}{{26}} - \dfrac{1}{{26}}} \right]dt} = \int\limits_0^1 {\left[ {{}^{25}{C_0}x + {}^{25}{C_1}\dfrac{{{x^2}}}{2} + {}^{25}{C_2}\dfrac{{{x^3}}}{3} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{26}}}}{{26}}} \right]} dx\]
Now integrate this equation as you know $\int {{t^n}dt = \left[ {\dfrac{{{t^{n + 1}}}}{{n + 1}}} \right]} $
$\left[ {\dfrac{{{t^{27}}}}{{27 \times 26}} - \dfrac{1}{{26}}} \right]_1^2 = \left[ {{}^{25}{C_0}\dfrac{{{x^2}}}{2} + {}^{25}{C_1}\dfrac{{{x^3}}}{{2 \times 3}} + {}^{25}{C_2}\dfrac{{{x^4}}}{{3 \times 4}} + ................. + {}^{25}{C_{25}}\dfrac{{{x^{27}}}}{{26 \times 27}}} \right]_0^1$
Now apply integrating limit
$
\left[ {\dfrac{{{2^{27}}}}{{27 \times 26}} - \dfrac{1}{{26}} - \left( {\dfrac{{{1^{27}}}}{{27 \times 26}}} \right)} \right] = \left[ {{}^{25}{C_0}\dfrac{1}{2} + {}^{25}{C_1}\dfrac{1}{{2 \times 3}} + {}^{25}{C_2}\dfrac{1}{{3 \times 4}} + ................. + {}^{25}{C_{25}}\dfrac{1}{{26 \times 27}} - 0 - 0 - 0} \right] \\
\Rightarrow \left[ {\dfrac{{{2^{27}} - 28}}{{27 \times 26}}} \right] = \dfrac{1}{{1 \times 2}}{}^{25}{C_0} + \dfrac{1}{{2 \times 3}}{}^{25}{C_1} + \dfrac{1}{{3 \times 4}}{}^{25}{C_2} + ............ + \dfrac{1}{{26 \times 27}}{}^{25}{C_{25}} \\
$
Hence, option (b) is correct.
Note: - Whenever we face such type of problem the key concept we have to remember is that always remember the Binomial expansion of${\left( {1 + x} \right)^n}$, then integrate the expansion w.r.t.$x$ With limit 0 to x, then again integrate w.r.t.$x$with limit 0 to 1, we will get the required answer.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Difference Between Plant Cell and Animal Cell