
Find out the sum of all-natural numbers between 1 and 145 which are visible by 4.
Answer
606k+ views
Hint: We can form a series of natural numbers divisible by 4 using arithmetic progression within the desired range. Then we can find the sum of that series.
Complete step-by-step answer:
Given the problem, we need to find out the sum of all-natural numbers between 1 and 145 which are divisible by 4.
We know that the smallest natural number divisible by 4 is 4 itself.
The next natural numbers divisible by 4 are 8,12, 16, till 144, as 144 is the largest natural number less than 145 divisible by 4.
It is observed that the numbers in this series have a common difference of 4.
Hence the above series forms an arithmetic progression,
4,8,12,16…144 (1)
In the above A.P series,
First term $a = 4$
And last term $l = 144$
Also, we know that the general nth term in an A.P series is given by
${a_n} = a + \left( {n - 1} \right)d$, where d is the common difference.
The nth term in A.P series (1) is 144.
Using the above formula, we get
$
144 = 4 + \left( {n - 1} \right)4 \\
\Rightarrow \dfrac{{140}}{4} = \left( {n - 1} \right) \\
\Rightarrow n = 36 \\
$
Hence the no. of terms in series (1) is 36.
Now we can find the sum of this series.
Also, we know that sum of an arithmetic progression is given by
$
{S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right) \\
\Rightarrow {S_{36}} = \dfrac{{36}}{2}\left( {8 + \left( {36 - 1} \right)4} \right) = 18\left( {148} \right) = 2664 \\
$
Therefore, the sum of terms of A.P series (1) is equal to 2664.
Hence, the sum of all-natural numbers between 1 and 145 which are visible by 4 is equal to 2664.
Note: The multiples of a number differ by the same number. Arithmetic progression formulas should be kept in mind while solving problems like above. Same procedure could be used for finding the sum of natural numbers divisible by any other number.
Complete step-by-step answer:
Given the problem, we need to find out the sum of all-natural numbers between 1 and 145 which are divisible by 4.
We know that the smallest natural number divisible by 4 is 4 itself.
The next natural numbers divisible by 4 are 8,12, 16, till 144, as 144 is the largest natural number less than 145 divisible by 4.
It is observed that the numbers in this series have a common difference of 4.
Hence the above series forms an arithmetic progression,
4,8,12,16…144 (1)
In the above A.P series,
First term $a = 4$
And last term $l = 144$
Also, we know that the general nth term in an A.P series is given by
${a_n} = a + \left( {n - 1} \right)d$, where d is the common difference.
The nth term in A.P series (1) is 144.
Using the above formula, we get
$
144 = 4 + \left( {n - 1} \right)4 \\
\Rightarrow \dfrac{{140}}{4} = \left( {n - 1} \right) \\
\Rightarrow n = 36 \\
$
Hence the no. of terms in series (1) is 36.
Now we can find the sum of this series.
Also, we know that sum of an arithmetic progression is given by
$
{S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right) \\
\Rightarrow {S_{36}} = \dfrac{{36}}{2}\left( {8 + \left( {36 - 1} \right)4} \right) = 18\left( {148} \right) = 2664 \\
$
Therefore, the sum of terms of A.P series (1) is equal to 2664.
Hence, the sum of all-natural numbers between 1 and 145 which are visible by 4 is equal to 2664.
Note: The multiples of a number differ by the same number. Arithmetic progression formulas should be kept in mind while solving problems like above. Same procedure could be used for finding the sum of natural numbers divisible by any other number.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

