Answer
Verified
371.7k+ views
Hint: Type of question is based on the ‘lowest common factor’ which is abbreviated as LCM. According to the question we had to find out the smallest number which when divided by any of the numbers from 2 to 10(i.e. 2, 3, 4, 5, 6, 7, 8, 9, 10) then it will leave the remainder 1. In other words we have to find out the number which is divisible by all the numbers from 2 to 10 and always leave the remainder 1 when divided by these 2 to 10 numbers.
Complete step by step answer:
As concept says we will simply find the LCM of these numbers and add the value which we want as a remainder then we will get the lowest number which when divided by some given numbers then we will get the required remainder. So according to the given condition we will first find the LCM of numbers from 2 to 10 and add 1 to it as we want it as a remainder. So we will get the answer.
So we will get the answer by concept, we will find LCM of 2, 3, 4, 5, 6, 7, 8, 9, 10.
Factors of numbers are;
$\begin{align}
& 2=2 \\
& 3=3 \\
& 4=2\times 2 \\
& 5=5 \\
& 6=2\times 3 \\
& 7=7 \\
& 8=2\times 2\times 2 \\
& 9=3\times 3 \\
& 10=2\times 5 \\
\end{align}$
So LCM of these numbers is;
$2\times 2\times 2\times 3\times 3\times 5\times 7=2520$
So 2520 is the LCM of numbers from 2 to 10. Now to get the value which always leaves a remainder 1 after division, so add 1 in 2520 so get the final answer. So we will get
$\begin{align}
& =2520+1 \\
& =2521 \\
\end{align}$
So, the correct answer is “Option A”.
Note: While solving the value we get on finding the LCM of numbers from 2 to 10 i.e. 2520 will give the remainder zero when divided by any of the numbers ranging from 2 to 10.
Complete step by step answer:
As concept says we will simply find the LCM of these numbers and add the value which we want as a remainder then we will get the lowest number which when divided by some given numbers then we will get the required remainder. So according to the given condition we will first find the LCM of numbers from 2 to 10 and add 1 to it as we want it as a remainder. So we will get the answer.
So we will get the answer by concept, we will find LCM of 2, 3, 4, 5, 6, 7, 8, 9, 10.
Factors of numbers are;
$\begin{align}
& 2=2 \\
& 3=3 \\
& 4=2\times 2 \\
& 5=5 \\
& 6=2\times 3 \\
& 7=7 \\
& 8=2\times 2\times 2 \\
& 9=3\times 3 \\
& 10=2\times 5 \\
\end{align}$
So LCM of these numbers is;
$2\times 2\times 2\times 3\times 3\times 5\times 7=2520$
So 2520 is the LCM of numbers from 2 to 10. Now to get the value which always leaves a remainder 1 after division, so add 1 in 2520 so get the final answer. So we will get
$\begin{align}
& =2520+1 \\
& =2521 \\
\end{align}$
So, the correct answer is “Option A”.
Note: While solving the value we get on finding the LCM of numbers from 2 to 10 i.e. 2520 will give the remainder zero when divided by any of the numbers ranging from 2 to 10.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE