
Find out the integration of the following expression: $ \int{\dfrac{{{\sin }^{4}}x}{{{\cos }^{8}}x}dx} $
Answer
574.2k+ views
Hint: We will first start by factoring out $ {{\cos }^{4}}x $ and then we will replace the term $ \dfrac{{{\sin }^{4}}x}{{{\cos }^{4}}x}={{\tan }^{4}}x $ and then change $ \dfrac{1}{{{\cos }^{4}}x}={{\sec }^{4}}x $ and perform integration, for that we will use the substitution method and for that we will assume $ u=\tan x $ and then $ du={{\sec }^{2}}xdx $ ultimately we will use power rule that is $ f\left( x \right)={{x}^{n}}\Rightarrow \int{f\left( x \right)=\dfrac{{{x}^{n}}}{n+1}+C} $ and hence again replace $ u=\tan x $ and get the answer.
Complete step-by-step answer:
We are given the expression: $ \int{\dfrac{{{\sin }^{4}}x}{{{\cos }^{8}}x}dx} $
First will start by multiplying the expression by 1, so we will get: $ \int{\dfrac{{{\sin }^{4}}x.1}{{{\cos }^{8}}x}dx} $ ,
Now from the denominator: $ {{\cos }^{8}}x $ , we will factor out $ {{\cos }^{4}}x $ , thus we will have the expression as: $ \int{\dfrac{{{\sin }^{4}}x.1}{{{\cos }^{4}}x{{\cos }^{4}}x}dx} $
From the obtained function we will now separate the fractions that is $ \int{\dfrac{1}{{{\cos }^{4}}x}.\dfrac{{{\sin }^{4}}x}{{{\cos }^{4}}x}dx} $
Now, we know that $ \dfrac{\sin \theta }{\cos \theta }=\tan \theta $ , therefore $ \dfrac{{{\sin }^{4}}x}{{{\cos }^{4}}x}={{\tan }^{4}}x $ and hence:
$ \int{\dfrac{1}{{{\cos }^{4}}x}.\dfrac{{{\sin }^{4}}x}{{{\cos }^{4}}x}dx}\Rightarrow \int{\dfrac{1}{{{\cos }^{4}}x}.{{\tan }^{4}}xdx}\text{ }........\text{Equation 1}\text{.} $
Now, we also know that: $ \dfrac{1}{\cos \theta }=\sec \theta $ , therefore $ \dfrac{1}{{{\cos }^{4}}x}={{\sec }^{4}}x $ and hence, equation 1 becomes: $ \int{\dfrac{1}{{{\cos }^{4}}x}.}{{\tan }^{4}}xdx=\int{{{\sec }^{4}}x.{{\tan }^{4}}xdx} $ , we will again factor out $ {{\sec }^{2}}x $ from $ {{\sec }^{4}}x $ and thus our integral becomes as following:
$ \Rightarrow \int{{{\sec }^{4}}x.{{\tan }^{4}}xdx}=\int{\left( {{\sec }^{2}}x{{\sec }^{2}}x \right){{\tan }^{4}}xdx}\text{ }.........\text{Equation 2} $ ,
Now, according to the trigonometric identity: $ {{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta $ , therefore equation 2 becomes: $ \int{\left( {{\sec }^{2}}x{{\sec }^{2}}x \right){{\tan }^{4}}xdx}=\int{\left( 1+{{\tan }^{2}}x \right){{\sec }^{2}}x{{\tan }^{4}}xdx} $ , Now, we will rearrange the expression and we will get:
$ \Rightarrow \int{\left( 1+{{\tan }^{2}}x \right){{\sec }^{2}}x{{\tan }^{4}}xdx}=\int{{{\tan }^{4}}x\left( 1+{{\tan }^{2}}x \right){{\sec }^{2}}xdx}\text{ }........\text{Equation 3} $ ,
Now let $ u=\tan x $ and as we know that $ f\left( x \right)=\tan \theta \Rightarrow f'\left( x \right)={{\tan }^{2}}\theta $ , therefore: $ du={{\sec }^{2}}xdx\Rightarrow \dfrac{1}{{{\sec }^{2}}x}du=dx $ , Now we will replace $ \tan x $ as $ u $ and $ \dfrac{1}{{{\sec }^{2}}x}du=dx $ in equation 3, therefore:
$ \Rightarrow \int{{{\tan }^{4}}x\left( 1+{{\tan }^{2}}x \right){{\sec }^{2}}xdx=\int{{{u}^{4}}\left( 1+{{u}^{2}} \right)}}{{\sec }^{2}}x.\dfrac{1}{{{\sec }^{2}}x}du $
We will now cancel: $ {{\sec }^{2}}x $ , and thus we will get: $ \int{{{u}^{4}}\left( 1+{{u}^{2}} \right)du} $ ,
we will now multiply $ {{u}^{4}} $ into the bracket and therefore: $ \int{{{u}^{4}}\left( 1+{{u}^{2}} \right)du}=\int{\left( {{u}^{4}}+{{u}^{6}} \right)du}\text{ }.........\text{Equation 4}\text{.} $
We will now use the power rule for integration that is: $ f\left( x \right)={{x}^{n}}\Rightarrow \int{f\left( x \right)=\dfrac{{{x}^{n}}}{n+1}+C} $ ,
Now equation 4 will become: $ \int{\left( {{u}^{6}}+{{u}^{4}} \right)du=\dfrac{{{u}^{6+1}}}{6+1}+\dfrac{{{u}^{4+1}}}{4+1}+C=\dfrac{{{u}^{7}}}{7}+\dfrac{{{u}^{5}}}{5}+C} $
Now we will again replace: $ u=\tan x $ , therefore:
$ \Rightarrow \dfrac{{{u}^{7}}}{7}+\dfrac{{{u}^{5}}}{5}+C=\dfrac{{{\tan }^{7}}x}{7}+\dfrac{{{\tan }^{5}}x}{5}+C $
Therefore, $ \int{\dfrac{{{\sin }^{4}}x}{{{\cos }^{8}}x}dx}=\dfrac{{{\tan }^{7}}x}{7}+\dfrac{{{\tan }^{5}}x}{5}+C $
Note: We must know the basic trigonometric properties in order to find out the integral involving the trigonometric function. Some properties are known as Pythagorean identities which are the extension of Pythagoras theorem: 1). $ {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 $ , 2). $ {{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta $ , 3). $ 1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta $ . Student might make the mistake while converting the functions and applying trigonometric functions.
Complete step-by-step answer:
We are given the expression: $ \int{\dfrac{{{\sin }^{4}}x}{{{\cos }^{8}}x}dx} $
First will start by multiplying the expression by 1, so we will get: $ \int{\dfrac{{{\sin }^{4}}x.1}{{{\cos }^{8}}x}dx} $ ,
Now from the denominator: $ {{\cos }^{8}}x $ , we will factor out $ {{\cos }^{4}}x $ , thus we will have the expression as: $ \int{\dfrac{{{\sin }^{4}}x.1}{{{\cos }^{4}}x{{\cos }^{4}}x}dx} $
From the obtained function we will now separate the fractions that is $ \int{\dfrac{1}{{{\cos }^{4}}x}.\dfrac{{{\sin }^{4}}x}{{{\cos }^{4}}x}dx} $
Now, we know that $ \dfrac{\sin \theta }{\cos \theta }=\tan \theta $ , therefore $ \dfrac{{{\sin }^{4}}x}{{{\cos }^{4}}x}={{\tan }^{4}}x $ and hence:
$ \int{\dfrac{1}{{{\cos }^{4}}x}.\dfrac{{{\sin }^{4}}x}{{{\cos }^{4}}x}dx}\Rightarrow \int{\dfrac{1}{{{\cos }^{4}}x}.{{\tan }^{4}}xdx}\text{ }........\text{Equation 1}\text{.} $
Now, we also know that: $ \dfrac{1}{\cos \theta }=\sec \theta $ , therefore $ \dfrac{1}{{{\cos }^{4}}x}={{\sec }^{4}}x $ and hence, equation 1 becomes: $ \int{\dfrac{1}{{{\cos }^{4}}x}.}{{\tan }^{4}}xdx=\int{{{\sec }^{4}}x.{{\tan }^{4}}xdx} $ , we will again factor out $ {{\sec }^{2}}x $ from $ {{\sec }^{4}}x $ and thus our integral becomes as following:
$ \Rightarrow \int{{{\sec }^{4}}x.{{\tan }^{4}}xdx}=\int{\left( {{\sec }^{2}}x{{\sec }^{2}}x \right){{\tan }^{4}}xdx}\text{ }.........\text{Equation 2} $ ,
Now, according to the trigonometric identity: $ {{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta $ , therefore equation 2 becomes: $ \int{\left( {{\sec }^{2}}x{{\sec }^{2}}x \right){{\tan }^{4}}xdx}=\int{\left( 1+{{\tan }^{2}}x \right){{\sec }^{2}}x{{\tan }^{4}}xdx} $ , Now, we will rearrange the expression and we will get:
$ \Rightarrow \int{\left( 1+{{\tan }^{2}}x \right){{\sec }^{2}}x{{\tan }^{4}}xdx}=\int{{{\tan }^{4}}x\left( 1+{{\tan }^{2}}x \right){{\sec }^{2}}xdx}\text{ }........\text{Equation 3} $ ,
Now let $ u=\tan x $ and as we know that $ f\left( x \right)=\tan \theta \Rightarrow f'\left( x \right)={{\tan }^{2}}\theta $ , therefore: $ du={{\sec }^{2}}xdx\Rightarrow \dfrac{1}{{{\sec }^{2}}x}du=dx $ , Now we will replace $ \tan x $ as $ u $ and $ \dfrac{1}{{{\sec }^{2}}x}du=dx $ in equation 3, therefore:
$ \Rightarrow \int{{{\tan }^{4}}x\left( 1+{{\tan }^{2}}x \right){{\sec }^{2}}xdx=\int{{{u}^{4}}\left( 1+{{u}^{2}} \right)}}{{\sec }^{2}}x.\dfrac{1}{{{\sec }^{2}}x}du $
We will now cancel: $ {{\sec }^{2}}x $ , and thus we will get: $ \int{{{u}^{4}}\left( 1+{{u}^{2}} \right)du} $ ,
we will now multiply $ {{u}^{4}} $ into the bracket and therefore: $ \int{{{u}^{4}}\left( 1+{{u}^{2}} \right)du}=\int{\left( {{u}^{4}}+{{u}^{6}} \right)du}\text{ }.........\text{Equation 4}\text{.} $
We will now use the power rule for integration that is: $ f\left( x \right)={{x}^{n}}\Rightarrow \int{f\left( x \right)=\dfrac{{{x}^{n}}}{n+1}+C} $ ,
Now equation 4 will become: $ \int{\left( {{u}^{6}}+{{u}^{4}} \right)du=\dfrac{{{u}^{6+1}}}{6+1}+\dfrac{{{u}^{4+1}}}{4+1}+C=\dfrac{{{u}^{7}}}{7}+\dfrac{{{u}^{5}}}{5}+C} $
Now we will again replace: $ u=\tan x $ , therefore:
$ \Rightarrow \dfrac{{{u}^{7}}}{7}+\dfrac{{{u}^{5}}}{5}+C=\dfrac{{{\tan }^{7}}x}{7}+\dfrac{{{\tan }^{5}}x}{5}+C $
Therefore, $ \int{\dfrac{{{\sin }^{4}}x}{{{\cos }^{8}}x}dx}=\dfrac{{{\tan }^{7}}x}{7}+\dfrac{{{\tan }^{5}}x}{5}+C $
Note: We must know the basic trigonometric properties in order to find out the integral involving the trigonometric function. Some properties are known as Pythagorean identities which are the extension of Pythagoras theorem: 1). $ {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 $ , 2). $ {{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta $ , 3). $ 1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta $ . Student might make the mistake while converting the functions and applying trigonometric functions.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

