
Find out the integration of the following expression: $ \int{\dfrac{{{\sin }^{4}}x}{{{\cos }^{8}}x}dx} $
Answer
510.3k+ views
Hint: We will first start by factoring out $ {{\cos }^{4}}x $ and then we will replace the term $ \dfrac{{{\sin }^{4}}x}{{{\cos }^{4}}x}={{\tan }^{4}}x $ and then change $ \dfrac{1}{{{\cos }^{4}}x}={{\sec }^{4}}x $ and perform integration, for that we will use the substitution method and for that we will assume $ u=\tan x $ and then $ du={{\sec }^{2}}xdx $ ultimately we will use power rule that is $ f\left( x \right)={{x}^{n}}\Rightarrow \int{f\left( x \right)=\dfrac{{{x}^{n}}}{n+1}+C} $ and hence again replace $ u=\tan x $ and get the answer.
Complete step-by-step answer:
We are given the expression: $ \int{\dfrac{{{\sin }^{4}}x}{{{\cos }^{8}}x}dx} $
First will start by multiplying the expression by 1, so we will get: $ \int{\dfrac{{{\sin }^{4}}x.1}{{{\cos }^{8}}x}dx} $ ,
Now from the denominator: $ {{\cos }^{8}}x $ , we will factor out $ {{\cos }^{4}}x $ , thus we will have the expression as: $ \int{\dfrac{{{\sin }^{4}}x.1}{{{\cos }^{4}}x{{\cos }^{4}}x}dx} $
From the obtained function we will now separate the fractions that is $ \int{\dfrac{1}{{{\cos }^{4}}x}.\dfrac{{{\sin }^{4}}x}{{{\cos }^{4}}x}dx} $
Now, we know that $ \dfrac{\sin \theta }{\cos \theta }=\tan \theta $ , therefore $ \dfrac{{{\sin }^{4}}x}{{{\cos }^{4}}x}={{\tan }^{4}}x $ and hence:
$ \int{\dfrac{1}{{{\cos }^{4}}x}.\dfrac{{{\sin }^{4}}x}{{{\cos }^{4}}x}dx}\Rightarrow \int{\dfrac{1}{{{\cos }^{4}}x}.{{\tan }^{4}}xdx}\text{ }........\text{Equation 1}\text{.} $
Now, we also know that: $ \dfrac{1}{\cos \theta }=\sec \theta $ , therefore $ \dfrac{1}{{{\cos }^{4}}x}={{\sec }^{4}}x $ and hence, equation 1 becomes: $ \int{\dfrac{1}{{{\cos }^{4}}x}.}{{\tan }^{4}}xdx=\int{{{\sec }^{4}}x.{{\tan }^{4}}xdx} $ , we will again factor out $ {{\sec }^{2}}x $ from $ {{\sec }^{4}}x $ and thus our integral becomes as following:
$ \Rightarrow \int{{{\sec }^{4}}x.{{\tan }^{4}}xdx}=\int{\left( {{\sec }^{2}}x{{\sec }^{2}}x \right){{\tan }^{4}}xdx}\text{ }.........\text{Equation 2} $ ,
Now, according to the trigonometric identity: $ {{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta $ , therefore equation 2 becomes: $ \int{\left( {{\sec }^{2}}x{{\sec }^{2}}x \right){{\tan }^{4}}xdx}=\int{\left( 1+{{\tan }^{2}}x \right){{\sec }^{2}}x{{\tan }^{4}}xdx} $ , Now, we will rearrange the expression and we will get:
$ \Rightarrow \int{\left( 1+{{\tan }^{2}}x \right){{\sec }^{2}}x{{\tan }^{4}}xdx}=\int{{{\tan }^{4}}x\left( 1+{{\tan }^{2}}x \right){{\sec }^{2}}xdx}\text{ }........\text{Equation 3} $ ,
Now let $ u=\tan x $ and as we know that $ f\left( x \right)=\tan \theta \Rightarrow f'\left( x \right)={{\tan }^{2}}\theta $ , therefore: $ du={{\sec }^{2}}xdx\Rightarrow \dfrac{1}{{{\sec }^{2}}x}du=dx $ , Now we will replace $ \tan x $ as $ u $ and $ \dfrac{1}{{{\sec }^{2}}x}du=dx $ in equation 3, therefore:
$ \Rightarrow \int{{{\tan }^{4}}x\left( 1+{{\tan }^{2}}x \right){{\sec }^{2}}xdx=\int{{{u}^{4}}\left( 1+{{u}^{2}} \right)}}{{\sec }^{2}}x.\dfrac{1}{{{\sec }^{2}}x}du $
We will now cancel: $ {{\sec }^{2}}x $ , and thus we will get: $ \int{{{u}^{4}}\left( 1+{{u}^{2}} \right)du} $ ,
we will now multiply $ {{u}^{4}} $ into the bracket and therefore: $ \int{{{u}^{4}}\left( 1+{{u}^{2}} \right)du}=\int{\left( {{u}^{4}}+{{u}^{6}} \right)du}\text{ }.........\text{Equation 4}\text{.} $
We will now use the power rule for integration that is: $ f\left( x \right)={{x}^{n}}\Rightarrow \int{f\left( x \right)=\dfrac{{{x}^{n}}}{n+1}+C} $ ,
Now equation 4 will become: $ \int{\left( {{u}^{6}}+{{u}^{4}} \right)du=\dfrac{{{u}^{6+1}}}{6+1}+\dfrac{{{u}^{4+1}}}{4+1}+C=\dfrac{{{u}^{7}}}{7}+\dfrac{{{u}^{5}}}{5}+C} $
Now we will again replace: $ u=\tan x $ , therefore:
$ \Rightarrow \dfrac{{{u}^{7}}}{7}+\dfrac{{{u}^{5}}}{5}+C=\dfrac{{{\tan }^{7}}x}{7}+\dfrac{{{\tan }^{5}}x}{5}+C $
Therefore, $ \int{\dfrac{{{\sin }^{4}}x}{{{\cos }^{8}}x}dx}=\dfrac{{{\tan }^{7}}x}{7}+\dfrac{{{\tan }^{5}}x}{5}+C $
Note: We must know the basic trigonometric properties in order to find out the integral involving the trigonometric function. Some properties are known as Pythagorean identities which are the extension of Pythagoras theorem: 1). $ {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 $ , 2). $ {{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta $ , 3). $ 1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta $ . Student might make the mistake while converting the functions and applying trigonometric functions.
Complete step-by-step answer:
We are given the expression: $ \int{\dfrac{{{\sin }^{4}}x}{{{\cos }^{8}}x}dx} $
First will start by multiplying the expression by 1, so we will get: $ \int{\dfrac{{{\sin }^{4}}x.1}{{{\cos }^{8}}x}dx} $ ,
Now from the denominator: $ {{\cos }^{8}}x $ , we will factor out $ {{\cos }^{4}}x $ , thus we will have the expression as: $ \int{\dfrac{{{\sin }^{4}}x.1}{{{\cos }^{4}}x{{\cos }^{4}}x}dx} $
From the obtained function we will now separate the fractions that is $ \int{\dfrac{1}{{{\cos }^{4}}x}.\dfrac{{{\sin }^{4}}x}{{{\cos }^{4}}x}dx} $
Now, we know that $ \dfrac{\sin \theta }{\cos \theta }=\tan \theta $ , therefore $ \dfrac{{{\sin }^{4}}x}{{{\cos }^{4}}x}={{\tan }^{4}}x $ and hence:
$ \int{\dfrac{1}{{{\cos }^{4}}x}.\dfrac{{{\sin }^{4}}x}{{{\cos }^{4}}x}dx}\Rightarrow \int{\dfrac{1}{{{\cos }^{4}}x}.{{\tan }^{4}}xdx}\text{ }........\text{Equation 1}\text{.} $
Now, we also know that: $ \dfrac{1}{\cos \theta }=\sec \theta $ , therefore $ \dfrac{1}{{{\cos }^{4}}x}={{\sec }^{4}}x $ and hence, equation 1 becomes: $ \int{\dfrac{1}{{{\cos }^{4}}x}.}{{\tan }^{4}}xdx=\int{{{\sec }^{4}}x.{{\tan }^{4}}xdx} $ , we will again factor out $ {{\sec }^{2}}x $ from $ {{\sec }^{4}}x $ and thus our integral becomes as following:
$ \Rightarrow \int{{{\sec }^{4}}x.{{\tan }^{4}}xdx}=\int{\left( {{\sec }^{2}}x{{\sec }^{2}}x \right){{\tan }^{4}}xdx}\text{ }.........\text{Equation 2} $ ,
Now, according to the trigonometric identity: $ {{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta $ , therefore equation 2 becomes: $ \int{\left( {{\sec }^{2}}x{{\sec }^{2}}x \right){{\tan }^{4}}xdx}=\int{\left( 1+{{\tan }^{2}}x \right){{\sec }^{2}}x{{\tan }^{4}}xdx} $ , Now, we will rearrange the expression and we will get:
$ \Rightarrow \int{\left( 1+{{\tan }^{2}}x \right){{\sec }^{2}}x{{\tan }^{4}}xdx}=\int{{{\tan }^{4}}x\left( 1+{{\tan }^{2}}x \right){{\sec }^{2}}xdx}\text{ }........\text{Equation 3} $ ,
Now let $ u=\tan x $ and as we know that $ f\left( x \right)=\tan \theta \Rightarrow f'\left( x \right)={{\tan }^{2}}\theta $ , therefore: $ du={{\sec }^{2}}xdx\Rightarrow \dfrac{1}{{{\sec }^{2}}x}du=dx $ , Now we will replace $ \tan x $ as $ u $ and $ \dfrac{1}{{{\sec }^{2}}x}du=dx $ in equation 3, therefore:
$ \Rightarrow \int{{{\tan }^{4}}x\left( 1+{{\tan }^{2}}x \right){{\sec }^{2}}xdx=\int{{{u}^{4}}\left( 1+{{u}^{2}} \right)}}{{\sec }^{2}}x.\dfrac{1}{{{\sec }^{2}}x}du $
We will now cancel: $ {{\sec }^{2}}x $ , and thus we will get: $ \int{{{u}^{4}}\left( 1+{{u}^{2}} \right)du} $ ,
we will now multiply $ {{u}^{4}} $ into the bracket and therefore: $ \int{{{u}^{4}}\left( 1+{{u}^{2}} \right)du}=\int{\left( {{u}^{4}}+{{u}^{6}} \right)du}\text{ }.........\text{Equation 4}\text{.} $
We will now use the power rule for integration that is: $ f\left( x \right)={{x}^{n}}\Rightarrow \int{f\left( x \right)=\dfrac{{{x}^{n}}}{n+1}+C} $ ,
Now equation 4 will become: $ \int{\left( {{u}^{6}}+{{u}^{4}} \right)du=\dfrac{{{u}^{6+1}}}{6+1}+\dfrac{{{u}^{4+1}}}{4+1}+C=\dfrac{{{u}^{7}}}{7}+\dfrac{{{u}^{5}}}{5}+C} $
Now we will again replace: $ u=\tan x $ , therefore:
$ \Rightarrow \dfrac{{{u}^{7}}}{7}+\dfrac{{{u}^{5}}}{5}+C=\dfrac{{{\tan }^{7}}x}{7}+\dfrac{{{\tan }^{5}}x}{5}+C $
Therefore, $ \int{\dfrac{{{\sin }^{4}}x}{{{\cos }^{8}}x}dx}=\dfrac{{{\tan }^{7}}x}{7}+\dfrac{{{\tan }^{5}}x}{5}+C $
Note: We must know the basic trigonometric properties in order to find out the integral involving the trigonometric function. Some properties are known as Pythagorean identities which are the extension of Pythagoras theorem: 1). $ {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 $ , 2). $ {{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta $ , 3). $ 1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta $ . Student might make the mistake while converting the functions and applying trigonometric functions.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
