Answer
Verified
429k+ views
Hint: Firstly know about the arithmetic progression. Then we use the concept of the arithmetic progression.After that we calculate the value of the \[n\]. Then substitute the value of the \[n\] in the \[n - 2,4n - 1\] and \[5n + 2\].
Formula used: If three numbers \[a,b\] and \[c\] are in A.P. then
\[2b = a + c\]
Complete step-by-step solution:
It is given that \[n - 2,4n - 1\] and \[5n + 2\] are in A.P. then we use the concept of arithmetic progression
According to the concept
$\Rightarrow$\[2\left( {4n - 1} \right) = n - 2 + 5n + 2\]
\[4n - 1\] is multiplied by \[2\] we get
$\Rightarrow$\[8n - 2 = n - 2 + 5n + 2\]
By addition of \[n - 2\] and \[5n + 2\] we get
$\Rightarrow$\[8n - 2 = 6n\]
Rewrite the equation after simplification we get
$\Rightarrow$\[8n - 6n - 2 = 0\]
Substract \[6n\] from \[8n\] we get
$\Rightarrow$\[2n - 2 = 0\]
Rewrite the equation after simplification we get \[2n = 2\]
\[2\] is divided by \[2\]we get
$\Rightarrow$\[\dfrac{2}{2} = 1\]
Hence the value of \[n\] is \[1\]
Substitute the value of \[n\] in \[n - 2,4n - 1\] and \[5n + 2\] we get
\[\
n - 1 \\
1 - 1 = 0
\ \]
Value of \[4n - 1\] is
\[4n - 1 = 4 \times 1 - 1 = 3\]
Value of \[5n + 2\] is
\[5n + 2 = 5 \times 1 + 2 = 7\]
Hence the value of \[n\] is 1 and numbers are \[0,3\] and \[7\]
Note: Arithmetic progression is a sequence whose terms increase or decrease by a fixed number. Fixed number is called the common difference.
If \[a\] is the first term and \[d\] is the common difference , then arithmetic progression can be written as \[a,a + d,a + 2d................a + \left( {n - 1} \right)d\]
\[{n^{th}}\] term of the arithmetic progression \[{t_n} = a + \left( {n - 1} \right)d\]
Formula used: If three numbers \[a,b\] and \[c\] are in A.P. then
\[2b = a + c\]
Complete step-by-step solution:
It is given that \[n - 2,4n - 1\] and \[5n + 2\] are in A.P. then we use the concept of arithmetic progression
According to the concept
$\Rightarrow$\[2\left( {4n - 1} \right) = n - 2 + 5n + 2\]
\[4n - 1\] is multiplied by \[2\] we get
$\Rightarrow$\[8n - 2 = n - 2 + 5n + 2\]
By addition of \[n - 2\] and \[5n + 2\] we get
$\Rightarrow$\[8n - 2 = 6n\]
Rewrite the equation after simplification we get
$\Rightarrow$\[8n - 6n - 2 = 0\]
Substract \[6n\] from \[8n\] we get
$\Rightarrow$\[2n - 2 = 0\]
Rewrite the equation after simplification we get \[2n = 2\]
\[2\] is divided by \[2\]we get
$\Rightarrow$\[\dfrac{2}{2} = 1\]
Hence the value of \[n\] is \[1\]
Substitute the value of \[n\] in \[n - 2,4n - 1\] and \[5n + 2\] we get
\[\
n - 1 \\
1 - 1 = 0
\ \]
Value of \[4n - 1\] is
\[4n - 1 = 4 \times 1 - 1 = 3\]
Value of \[5n + 2\] is
\[5n + 2 = 5 \times 1 + 2 = 7\]
Hence the value of \[n\] is 1 and numbers are \[0,3\] and \[7\]
Note: Arithmetic progression is a sequence whose terms increase or decrease by a fixed number. Fixed number is called the common difference.
If \[a\] is the first term and \[d\] is the common difference , then arithmetic progression can be written as \[a,a + d,a + 2d................a + \left( {n - 1} \right)d\]
\[{n^{th}}\] term of the arithmetic progression \[{t_n} = a + \left( {n - 1} \right)d\]
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths