
Find:
${{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}}}\div {{\left( \dfrac{-5}{6} \right)}^{\dfrac{7}{6}}}$
Answer
514.2k+ views
Hint: To divide the exponents or the powers with the same base or the same term, simply subtract the powers. As, the division is just the opposite of the multiplication, so when you add the powers in the multiplication, just subtract the powers in case of the division with the same base. For example \[{{2}^{5}}\div {{2}^{2}}={{2}^{5-2}}={{2}^{3}}\]
Complete step-by-step answer:
Here, by using the property – in case of division of the powers with the same base, simply subtracting the powers
$\Rightarrow {{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}}}\div {{\left( \dfrac{-5}{6} \right)}^{\dfrac{7}{6}}}={{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}-\dfrac{7}{6}}}$
Take LCM of the powers on the right hand side of the equation
$\Rightarrow {{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}}}\div {{\left( \dfrac{-5}{6} \right)}^{\dfrac{7}{6}}}={{\left( \dfrac{-5}{6} \right)}^{\dfrac{18}{24}-\dfrac{28}{24}}}$
Now, simply the power on the right hand side of the equation. Using the identity of minus and plus, do minus and sign of greater value.
$\Rightarrow {{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}}}\div {{\left( \dfrac{-5}{6} \right)}^{\dfrac{7}{6}}}={{\left( \dfrac{-5}{6} \right)}^{\dfrac{-10}{24}}}$
Taking “two common” from the numerator and denominator of the power on RHS
$\Rightarrow {{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}}}\div {{\left( \dfrac{-5}{6} \right)}^{\dfrac{7}{6}}}={{\left( \dfrac{-5}{6} \right)}^{\dfrac{-5}{12}}}$
Therefore, the required solution is –
$\Rightarrow {{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}}}\div {{\left( \dfrac{-5}{6} \right)}^{\dfrac{7}{6}}}={{\left( \dfrac{-5}{6} \right)}^{\dfrac{-5}{12}}}$
Note: Always remember all the rules of multiplication and division of the fractions. Remember two basic rules - Multiply the given terms with the exponents using the general rule: ${{y}^{a}}\times {{y}^{b}}={{y}^{a+b}}$ and similarly the divide terms with the exponents using the rule: ${{y}^{a}}\div {{y}^{b}}={{y}^{a-b}}$. Do simplification carefully. Rest goes perfect in these types of questions.
Complete step-by-step answer:
Here, by using the property – in case of division of the powers with the same base, simply subtracting the powers
$\Rightarrow {{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}}}\div {{\left( \dfrac{-5}{6} \right)}^{\dfrac{7}{6}}}={{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}-\dfrac{7}{6}}}$
Take LCM of the powers on the right hand side of the equation
$\Rightarrow {{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}}}\div {{\left( \dfrac{-5}{6} \right)}^{\dfrac{7}{6}}}={{\left( \dfrac{-5}{6} \right)}^{\dfrac{18}{24}-\dfrac{28}{24}}}$
Now, simply the power on the right hand side of the equation. Using the identity of minus and plus, do minus and sign of greater value.
$\Rightarrow {{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}}}\div {{\left( \dfrac{-5}{6} \right)}^{\dfrac{7}{6}}}={{\left( \dfrac{-5}{6} \right)}^{\dfrac{-10}{24}}}$
Taking “two common” from the numerator and denominator of the power on RHS
$\Rightarrow {{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}}}\div {{\left( \dfrac{-5}{6} \right)}^{\dfrac{7}{6}}}={{\left( \dfrac{-5}{6} \right)}^{\dfrac{-5}{12}}}$
Therefore, the required solution is –
$\Rightarrow {{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}}}\div {{\left( \dfrac{-5}{6} \right)}^{\dfrac{7}{6}}}={{\left( \dfrac{-5}{6} \right)}^{\dfrac{-5}{12}}}$
Note: Always remember all the rules of multiplication and division of the fractions. Remember two basic rules - Multiply the given terms with the exponents using the general rule: ${{y}^{a}}\times {{y}^{b}}={{y}^{a+b}}$ and similarly the divide terms with the exponents using the rule: ${{y}^{a}}\div {{y}^{b}}={{y}^{a-b}}$. Do simplification carefully. Rest goes perfect in these types of questions.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

How much is 23 kg in pounds class 11 chemistry CBSE

Whales are warmblooded animals which live in cold seas class 11 biology CBSE

Explain zero factorial class 11 maths CBSE
