Answer
Verified
456.6k+ views
Hint: To divide the exponents or the powers with the same base or the same term, simply subtract the powers. As, the division is just the opposite of the multiplication, so when you add the powers in the multiplication, just subtract the powers in case of the division with the same base. For example \[{{2}^{5}}\div {{2}^{2}}={{2}^{5-2}}={{2}^{3}}\]
Complete step-by-step answer:
Here, by using the property – in case of division of the powers with the same base, simply subtracting the powers
$\Rightarrow {{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}}}\div {{\left( \dfrac{-5}{6} \right)}^{\dfrac{7}{6}}}={{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}-\dfrac{7}{6}}}$
Take LCM of the powers on the right hand side of the equation
$\Rightarrow {{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}}}\div {{\left( \dfrac{-5}{6} \right)}^{\dfrac{7}{6}}}={{\left( \dfrac{-5}{6} \right)}^{\dfrac{18}{24}-\dfrac{28}{24}}}$
Now, simply the power on the right hand side of the equation. Using the identity of minus and plus, do minus and sign of greater value.
$\Rightarrow {{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}}}\div {{\left( \dfrac{-5}{6} \right)}^{\dfrac{7}{6}}}={{\left( \dfrac{-5}{6} \right)}^{\dfrac{-10}{24}}}$
Taking “two common” from the numerator and denominator of the power on RHS
$\Rightarrow {{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}}}\div {{\left( \dfrac{-5}{6} \right)}^{\dfrac{7}{6}}}={{\left( \dfrac{-5}{6} \right)}^{\dfrac{-5}{12}}}$
Therefore, the required solution is –
$\Rightarrow {{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}}}\div {{\left( \dfrac{-5}{6} \right)}^{\dfrac{7}{6}}}={{\left( \dfrac{-5}{6} \right)}^{\dfrac{-5}{12}}}$
Note: Always remember all the rules of multiplication and division of the fractions. Remember two basic rules - Multiply the given terms with the exponents using the general rule: ${{y}^{a}}\times {{y}^{b}}={{y}^{a+b}}$ and similarly the divide terms with the exponents using the rule: ${{y}^{a}}\div {{y}^{b}}={{y}^{a-b}}$. Do simplification carefully. Rest goes perfect in these types of questions.
Complete step-by-step answer:
Here, by using the property – in case of division of the powers with the same base, simply subtracting the powers
$\Rightarrow {{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}}}\div {{\left( \dfrac{-5}{6} \right)}^{\dfrac{7}{6}}}={{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}-\dfrac{7}{6}}}$
Take LCM of the powers on the right hand side of the equation
$\Rightarrow {{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}}}\div {{\left( \dfrac{-5}{6} \right)}^{\dfrac{7}{6}}}={{\left( \dfrac{-5}{6} \right)}^{\dfrac{18}{24}-\dfrac{28}{24}}}$
Now, simply the power on the right hand side of the equation. Using the identity of minus and plus, do minus and sign of greater value.
$\Rightarrow {{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}}}\div {{\left( \dfrac{-5}{6} \right)}^{\dfrac{7}{6}}}={{\left( \dfrac{-5}{6} \right)}^{\dfrac{-10}{24}}}$
Taking “two common” from the numerator and denominator of the power on RHS
$\Rightarrow {{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}}}\div {{\left( \dfrac{-5}{6} \right)}^{\dfrac{7}{6}}}={{\left( \dfrac{-5}{6} \right)}^{\dfrac{-5}{12}}}$
Therefore, the required solution is –
$\Rightarrow {{\left( \dfrac{-5}{6} \right)}^{\dfrac{3}{4}}}\div {{\left( \dfrac{-5}{6} \right)}^{\dfrac{7}{6}}}={{\left( \dfrac{-5}{6} \right)}^{\dfrac{-5}{12}}}$
Note: Always remember all the rules of multiplication and division of the fractions. Remember two basic rules - Multiply the given terms with the exponents using the general rule: ${{y}^{a}}\times {{y}^{b}}={{y}^{a+b}}$ and similarly the divide terms with the exponents using the rule: ${{y}^{a}}\div {{y}^{b}}={{y}^{a-b}}$. Do simplification carefully. Rest goes perfect in these types of questions.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it