
Find ${{\left( \text{ }\!\!\Delta\!\!\text{ S} \right)}_{\text{universe}}}$ (in Joule/mole/K) for a chemical reaction at 300K if $\text{ }\!\!\Delta\!\!\text{ H}_{\text{300K}}^{\text{0}}\text{=75kJ/mol}$.$\text{ }\!\!\Delta\!\!\text{ S}_{\text{300K}}^{\text{0}}\text{=300J/K}$
Answer
553.2k+ views
Hint Entropy of the universe can be calculated using the formulae,
${{\text{ }\!\!\Delta\!\!\text{ }}_{\text{universe}}}\text{=}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{system}}}\text{+}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{surrounding}}}$
Entropy of the system can be calculated using the formulae,
$\text{ }\!\!\Delta\!\!\text{ S=}\dfrac{\text{q}}{\text{T}}$
$\text{ }\!\!\Delta\!\!\text{ S=}\dfrac{\text{q}}{\text{T}}\text{=}\dfrac{\text{ }\!\!\Delta\!\!\text{ H}}{\text{T}}$, here q is the amount of heat for the temperature change and T is the temperature.
Complete step by step solution:
Entropy is the measure of randomness of the system. According to the second law of thermodynamics entropy of the Universe is constantly increasing and it is the summation of entropy of a system or say entropy of reaction and entropy of surrounding.
And for spontaneous reaction, entropy will be maximum and at equilibrium the change in entropy will be zero i.e. $\text{ }\!\!\Delta\!\!\text{ S=0}$
And we can write entropy as the amount of heat for the temperature change which will be equal to the change in enthalpy with temperature.
And hence we can write the equation as,
$\text{ }\!\!\Delta\!\!\text{ S=}\dfrac{\text{q}}{\text{T}}\text{=}\dfrac{\text{ }\!\!\Delta\!\!\text{ H}}{\text{T}}$
Now let’s check the data provided in the question,
It is given that,
$\text{ }\!\!\Delta\!\!\text{ H}_{\text{300K}}^{\text{0}}\text{=75kJ/mol}$, which is change in enthalpy of the system or reaction.
Temperature (T) =300 K
$\text{ }\!\!\Delta\!\!\text{ S}_{\text{300K}}^{\text{0}}\text{=300J/K}$
Enthalpy is given in kilojoules, so it should be converted into Joules.
And the equation for entropy of system is,
$\text{ }\!\!\Delta\!\!\text{ }{{\text{S}}_{\text{reaction}}}\text{=}\dfrac{\text{ }\!\!\Delta\!\!\text{ H}}{\text{T}}\text{=}\dfrac{\text{75 }\!\!\times\!\!\text{ 1000}}{\text{300}}$
$\text{ }\!\!\Delta\!\!\text{ }{{\text{S}}_{\text{reaction}}}\text{=250J/K}$
${{\text{ }\!\!\Delta\!\!\text{ }}_{\text{universe}}}\text{=}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{system}}}\text{+}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{surrounding}}}$
${{\text{ }\!\!\Delta\!\!\text{ }}_{\text{universe}}}\text{=250+300=550J/K}$
Here the entropy is positive, so it is a spontaneous reaction.
Note: While doing such problems the units should be taken in consideration. As in this case enthalpy was given in Kilojoules and it has to be converted into joules.
And attention should be given for signs as for non-spontaneous reactions, the entropy will be negative.
And enthalpy also we have both negative and positive values, so it should be taken care off.
${{\text{ }\!\!\Delta\!\!\text{ }}_{\text{universe}}}\text{=}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{system}}}\text{+}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{surrounding}}}$
Entropy of the system can be calculated using the formulae,
$\text{ }\!\!\Delta\!\!\text{ S=}\dfrac{\text{q}}{\text{T}}$
$\text{ }\!\!\Delta\!\!\text{ S=}\dfrac{\text{q}}{\text{T}}\text{=}\dfrac{\text{ }\!\!\Delta\!\!\text{ H}}{\text{T}}$, here q is the amount of heat for the temperature change and T is the temperature.
Complete step by step solution:
Entropy is the measure of randomness of the system. According to the second law of thermodynamics entropy of the Universe is constantly increasing and it is the summation of entropy of a system or say entropy of reaction and entropy of surrounding.
And for spontaneous reaction, entropy will be maximum and at equilibrium the change in entropy will be zero i.e. $\text{ }\!\!\Delta\!\!\text{ S=0}$
And we can write entropy as the amount of heat for the temperature change which will be equal to the change in enthalpy with temperature.
And hence we can write the equation as,
$\text{ }\!\!\Delta\!\!\text{ S=}\dfrac{\text{q}}{\text{T}}\text{=}\dfrac{\text{ }\!\!\Delta\!\!\text{ H}}{\text{T}}$
Now let’s check the data provided in the question,
It is given that,
$\text{ }\!\!\Delta\!\!\text{ H}_{\text{300K}}^{\text{0}}\text{=75kJ/mol}$, which is change in enthalpy of the system or reaction.
Temperature (T) =300 K
$\text{ }\!\!\Delta\!\!\text{ S}_{\text{300K}}^{\text{0}}\text{=300J/K}$
Enthalpy is given in kilojoules, so it should be converted into Joules.
And the equation for entropy of system is,
$\text{ }\!\!\Delta\!\!\text{ }{{\text{S}}_{\text{reaction}}}\text{=}\dfrac{\text{ }\!\!\Delta\!\!\text{ H}}{\text{T}}\text{=}\dfrac{\text{75 }\!\!\times\!\!\text{ 1000}}{\text{300}}$
$\text{ }\!\!\Delta\!\!\text{ }{{\text{S}}_{\text{reaction}}}\text{=250J/K}$
${{\text{ }\!\!\Delta\!\!\text{ }}_{\text{universe}}}\text{=}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{system}}}\text{+}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{surrounding}}}$
${{\text{ }\!\!\Delta\!\!\text{ }}_{\text{universe}}}\text{=250+300=550J/K}$
Here the entropy is positive, so it is a spontaneous reaction.
Note: While doing such problems the units should be taken in consideration. As in this case enthalpy was given in Kilojoules and it has to be converted into joules.
And attention should be given for signs as for non-spontaneous reactions, the entropy will be negative.
And enthalpy also we have both negative and positive values, so it should be taken care off.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

