# Find $\int{\dfrac{\sin x}{\sin \left( x-a \right)}dx}$.

Answer

Verified

283.8k+ views

**Hint:**We first break the numerator of the fraction $\dfrac{\sin x}{\sin \left( x-a \right)}$ as $\sin x=\sin \left\{ \left( x-a \right)+a \right\}$. We apply the identity formula of $\sin \left( m+n \right)=\sin m\cos n+\cos m\sin n$. We use the integral formula of $\int{\cot xdx}=\log \left| \sin x \right|$. We break the integration and find the solution.

**Complete step by step solution:**

To simplify the term $\dfrac{\sin x}{\sin \left( x-a \right)}$, we first form the numerator as $\sin x=\sin \left\{ \left( x-a \right)+a \right\}$.

So, $\dfrac{\sin x}{\sin \left( x-a \right)}=\dfrac{\sin \left\{ \left( x-a \right)+a \right\}}{\sin \left( x-a \right)}$.

Now we use the trigonometric associative form of $\sin \left( m+n \right)=\sin m\cos n+\cos m\sin n$.

Taking the variables as $m=\left( x-a \right),n=a$, we get $\sin x=\sin \left( x-a \right)\cos a+\cos \left( x-a \right)\sin a$.

The simplified form will be $\dfrac{\sin x}{\sin \left( x-a \right)}=\dfrac{\sin \left( x-a \right)\cos a+\cos \left( x-a \right)\sin a}{\sin \left( x-a \right)}=\cos a+\cot \left( x-a \right)\sin a$

In the given terms, $a$ is constant and $x$ is variable. Therefore, both $\cos a,\sin a$ are constant.

So, $\int{\dfrac{\sin x}{\sin \left( x-a \right)}dx}=\int{\left[ \cos a+\cot \left( x-a \right)\sin a \right]dx}$.

We break the addition and get $\int{\left[ \cos a+\cot \left( x-a \right)\sin a \right]dx}=\cos a\int{dx}+\sin a\int{\cot \left( x-a \right)dx}$.

We take the differential form as $d\left( x-a \right)=dx$.

We also know that $\int{\cot xdx}=\log \left| \sin x \right|$.

Therefore, $\cos a\int{dx}+\sin a\int{\cot \left( x-a \right)dx}=\cos a\int{dx}+\sin a\int{\cot \left( x-a \right)d\left( x-a \right)}$.

$\begin{align}

& \int{\dfrac{\sin x}{\sin \left( x-a \right)}dx} \\

& =\cos a\int{dx}+\sin a\int{\cot \left( x-a \right)d\left( x-a \right)} \\

& =x\cos a+\sin a\log \left| \sin \left( x-a \right) \right|+c \\

\end{align}$

Here $c$ is the integral constant.

**Note:**

We broke the numerator instead of the denominator as that helps in breaking the fraction into two parts, one of which is constant. We need to change the differential form as the main formula of $\int{\cot xdx}=\log \left| \sin x \right|$ is for variable $x$.

Recently Updated Pages

Basicity of sulphurous acid and sulphuric acid are

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What are the measures one has to take to prevent contracting class 12 biology CBSE

Suggest some methods to assist infertile couples to class 12 biology CBSE

Amniocentesis for sex determination is banned in our class 12 biology CBSE

Trending doubts

Change the following sentences into negative and interrogative class 10 english CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is 1 divided by 0 class 8 maths CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Convert compound sentence to simple sentence He is class 10 english CBSE

India lies between latitudes and longitudes class 12 social science CBSE

Why are rivers important for the countrys economy class 12 social science CBSE

Distinguish between Khadar and Bhangar class 9 social science CBSE