
Find $\dfrac{dy}{dx}$ where $y=\log \left( \sec x \right)$ for $0\le x\le \dfrac{\pi }{2}$.
Answer
603.9k+ views
Assume sec x as t and differentiate it, we get value of dt.By substituting value of sec x as t in given equation we get log t and differentiate this equation with respect to x by using product rule and substitute the values of t and dt to get required answer.
“Complete step-by-step answer:”
Given, $y=\log \left( \sec x \right)$.
Let us assume sec x to be t.
$\Rightarrow t=\sec x$
Differentiating both sides, we get:
$\begin{align}
& dt=\sec x\tan xdx \\
& \Rightarrow \dfrac{dt}{dx}=\sec x\tan x \\
& y=\log t \\
& \dfrac{dy}{dx}=\left( \dfrac{dy}{dt} \right)\times \left( \dfrac{dt}{dx} \right) \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{d}{dt}\left( \log t \right)\times \dfrac{d}{dx}\left( \sec x \right) \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{t}\times \sec x\tan x \\
\end{align}$
Putting the value of t = sec x in the above equation we get,
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{1}{\sec x}\times \sec x\tan x \\
& \therefore \dfrac{dy}{dx}=\tan x \\
\end{align}$
Therefore, the answer is tan x.
Note: In the given question, we have used the product rule which is:
$\dfrac{dy}{dx}=\dfrac{dy}{dt}\times \dfrac{dt}{dm}\times \dfrac{dm}{dx}$
Also, don’t get confused by the fact that it is mentioned $x\in \left[ 0,\dfrac{\pi }{2} \right]$.
It is mentioned to define the domain of log.
“Complete step-by-step answer:”
Given, $y=\log \left( \sec x \right)$.
Let us assume sec x to be t.
$\Rightarrow t=\sec x$
Differentiating both sides, we get:
$\begin{align}
& dt=\sec x\tan xdx \\
& \Rightarrow \dfrac{dt}{dx}=\sec x\tan x \\
& y=\log t \\
& \dfrac{dy}{dx}=\left( \dfrac{dy}{dt} \right)\times \left( \dfrac{dt}{dx} \right) \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{d}{dt}\left( \log t \right)\times \dfrac{d}{dx}\left( \sec x \right) \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{t}\times \sec x\tan x \\
\end{align}$
Putting the value of t = sec x in the above equation we get,
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{1}{\sec x}\times \sec x\tan x \\
& \therefore \dfrac{dy}{dx}=\tan x \\
\end{align}$
Therefore, the answer is tan x.
Note: In the given question, we have used the product rule which is:
$\dfrac{dy}{dx}=\dfrac{dy}{dt}\times \dfrac{dt}{dm}\times \dfrac{dm}{dx}$
Also, don’t get confused by the fact that it is mentioned $x\in \left[ 0,\dfrac{\pi }{2} \right]$.
It is mentioned to define the domain of log.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which animal has three hearts class 11 biology CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

Mention the basic forces in nature class 11 physics CBSE

What is centripetal acceleration Derive the expression class 11 physics CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

