Courses
Courses for Kids
Free study material
Free LIVE classes
More # Find $\dfrac{dy}{dx}$ where $y=\log \left( \sec x \right)$ for $0\le x\le \dfrac{\pi }{2}$. Verified
324.6k+ views
Assume sec x as t and differentiate it, we get value of dt.By substituting value of sec x as t in given equation we get log t and differentiate this equation with respect to x by using product rule and substitute the values of t and dt to get required answer.

Given, $y=\log \left( \sec x \right)$.
Let us assume sec x to be t.
$\Rightarrow t=\sec x$
Differentiating both sides, we get:
\begin{align} & dt=\sec x\tan xdx \\ & \Rightarrow \dfrac{dt}{dx}=\sec x\tan x \\ & y=\log t \\ & \dfrac{dy}{dx}=\left( \dfrac{dy}{dt} \right)\times \left( \dfrac{dt}{dx} \right) \\ & \Rightarrow \dfrac{dy}{dx}=\dfrac{d}{dt}\left( \log t \right)\times \dfrac{d}{dx}\left( \sec x \right) \\ & \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{t}\times \sec x\tan x \\ \end{align}
Putting the value of t = sec x in the above equation we get,
\begin{align} & \dfrac{dy}{dx}=\dfrac{1}{\sec x}\times \sec x\tan x \\ & \therefore \dfrac{dy}{dx}=\tan x \\ \end{align}
Therefore, the answer is tan x.

Note: In the given question, we have used the product rule which is:
$\dfrac{dy}{dx}=\dfrac{dy}{dt}\times \dfrac{dt}{dm}\times \dfrac{dm}{dx}$
Also, don’t get confused by the fact that it is mentioned $x\in \left[ 0,\dfrac{\pi }{2} \right]$.
It is mentioned to define the domain of log.
Last updated date: 29th May 2023
Total views: 324.6k
Views today: 5.82k