Answer

Verified

374.7k+ views

**Hint:**

Here, we have to find the derivative of the given function. We will use the derivative formula to find the derivative of the logarithmic function. Then we will find the derivative of the algebraic function by using the concept of Implicit differentiation. We will simplify the equation further to get the required answer.

**Formula Used:**

We will use the following formulas:

1) Derivative formula: \[\dfrac{d}{{dx}}\left( {\ln x} \right) = \dfrac{1}{x}\]

2) Derivative formula: \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]

**Complete step by step solution:**

We are given with a function \[y = \ln \left( {8{x^2} + 9{y^2}} \right)\]

Now, we will find the derivative of the given function.

Now, we will find the derivative of the logarithmic function followed by the derivative of the algebraic function simultaneously.

Using the derivative formula \[\dfrac{d}{{dx}}\left( {\ln x} \right) = \dfrac{1}{x}\], we get

\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{8{x^2} + 9{y^2}}}\left[ {\dfrac{d}{{dx}}\left( {8{x^2} + 9{y^2}} \right)} \right]\]

Simplifying the equation, we get

\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{8{x^2} + 9{y^2}}}\dfrac{d}{{dx}}\left( {8{x^2}} \right) + \dfrac{1}{{8{x^2} + 9{y^2}}}\dfrac{d}{{dx}}\left( {9{y^2}} \right)\]

Now, by using the derivative formula \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\], we get

\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{8 \cdot 2x}}{{8{x^2} + 9{y^2}}} + \dfrac{{9 \cdot 2y}}{{8{x^2} + 9{y^2}}}\dfrac{{dy}}{{dx}}\]

Multiplying the terms, we get

\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{16x}}{{8{x^2} + 9{y^2}}} + \dfrac{{18y}}{{8{x^2} + 9{y^2}}}\dfrac{{dy}}{{dx}}\]

Rewriting the equation, we get

\[ \Rightarrow \dfrac{{dy}}{{dx}} - \dfrac{{18y}}{{8{x^2} + 9{y^2}}}\dfrac{{dy}}{{dx}} = \dfrac{{16x}}{{8{x^2} + 9{y^2}}}\]

Now, by taking out the common factor, we get

\[ \Rightarrow \dfrac{{dy}}{{dx}}\left( {1 - \dfrac{{18y}}{{8{x^2} + 9{y^2}}}} \right) = \dfrac{{16x}}{{8{x^2} + 9{y^2}}}\]

Taking LCM of the terms inside the bracket on the RHS, we get

\[ \Rightarrow \dfrac{{dy}}{{dx}}\left( {1 \times \dfrac{{8{x^2} + 9{y^2}}}{{8{x^2} + 9{y^2}}} - \dfrac{{18y}}{{8{x^2} + 9{y^2}}}} \right) = \dfrac{{16x}}{{8{x^2} + 9{y^2}}}\]

\[ \Rightarrow \dfrac{{dy}}{{dx}}\left( {\dfrac{{8{x^2} + 9{y^2} - 18y}}{{8{x^2} + 9{y^2}}}} \right) = \dfrac{{16x}}{{8{x^2} + 9{y^2}}}\]

Now, by rewriting the terms, we get

\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{16x}}{{8{x^2} + 9{y^2}}}}}{{\left( {\dfrac{{8{x^2} + 9{y^2} - 18y}}{{8{x^2} + 9{y^2}}}} \right)}}\]

Cancelling out the same terms of the fractions, we get

\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{16x}}{{8{x^2} + 9{y^2} - 18y}}\]

**Therefore, the derivative \[\dfrac{{dy}}{{dx}}\] of the function \[y = \ln \left( {8{x^2} + 9{y^2}} \right)\] is \[\dfrac{{16x}}{{8{x^2} + 9{y^2} - 18y}}\].**

**Note:**

We know that Differentiation is a method of finding the derivative of a function and finding the rate of change of function with respect to one variable. But here, we are using the concept of Implicit differentiation. Implicit Differentiation is a process of finding the derivative of a function when the function has both the terms\[x\] and\[y\]. Implicit Differentiation is similar to the process of differentiation and uses the same formula used for differentiation.

Recently Updated Pages

Cryolite and fluorspar are mixed with Al2O3 during class 11 chemistry CBSE

Select the smallest atom A F B Cl C Br D I class 11 chemistry CBSE

The best reagent to convert pent 3 en 2 ol and pent class 11 chemistry CBSE

Reverse process of sublimation is aFusion bCondensation class 11 chemistry CBSE

The best and latest technique for isolation purification class 11 chemistry CBSE

Hydrochloric acid is a Strong acid b Weak acid c Strong class 11 chemistry CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

The Buddhist universities of Nalanda and Vikramshila class 7 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Name 10 Living and Non living things class 9 biology CBSE

Which are the Top 10 Largest Countries of the World?

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Who founded the Nalanda University 1 Mauryan 2 Guptas class 6 social science CBSE