Answer
Verified
413.1k+ views
Hint: In this question, we are given an equation and we have been asked to find its derivative. You will have to use chain rule while answering this question. First, simply find the derivative. While differentiating the second term of the given equation, using chain rule. After that, use some very basic trigonometric formulae to simplify the answer.
Formula used: 1) $\dfrac{{d\left( x \right)}}{{dx}} = 1$
2) $\dfrac{{d\left( {\tan x} \right)}}{{dx}} = {\sec ^2}x$
Complete step-by-step solution:
We are given an equation $x + \tan \left( {xy} \right) = 0$.
Let us differentiate both the sides with respect to x.
$ \Rightarrow x + \tan \left( {xy} \right) = 0$
Differentiating both the sides with respect to x,
$ \Rightarrow \dfrac{d}{{dx}}\left( {x + \tan \left( {xy} \right)} \right) = \dfrac{{d\left( 0 \right)}}{{dx}}$
$ \Rightarrow 1 + {\sec ^2}\left( {xy} \right) \times \dfrac{{d\left( {xy} \right)}}{{dx}} = 0$ …. (Here, we used chain rule to find the derivative of$\tan \left( {xy} \right)$)
Differentiating using chain rule and product rule,
$ \Rightarrow 1 + {\sec ^2}\left( {xy} \right) \times \left[ {x\dfrac{{dy}}{{dx}} + y} \right] = 0$
Opening the brackets,
$ \Rightarrow 1 + x{\sec ^2}\left( {xy} \right)\dfrac{{dy}}{{dx}} + y{\sec ^2}xy = 0$
Shifting all the terms to the RHS, other than the term containing$\dfrac{{dy}}{{dx}}$,
$ \Rightarrow x{\sec ^2}\left( {xy} \right)\dfrac{{dy}}{{dx}} = - \left( {y{{\sec }^2}xy + 1} \right)$
Now, we will shift the co-efficient of $\dfrac{{dy}}{{dx}}$,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - \left( {y{{\sec }^2}xy + 1} \right)}}{{x{{\sec }^2}xy}}$
Expanding the RHS,
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \left( {\dfrac{{y{{\sec }^2}xy}}{{x{{\sec }^2}xy}} + \dfrac{1}{{x{{\sec }^2}xy}}} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \left( {\dfrac{y}{x} + \dfrac{{{{\cos }^2}xy}}{x}} \right)$ …. $\left( {\dfrac{1}{{\sec x}} = \cos x} \right)$
Hence, $\dfrac{{dy}}{{dx}}$ of $x + \tan \left( {xy} \right) = 0$ is $ - \left( {\dfrac{y}{x} + \dfrac{{{{\cos }^2}xy}}{x}} \right)$.
Note: Chain rule: What is chain rule? This rule is used to find the derivative of composite functions. In a composite function, there is an outer function and an inner function. Correct identification of these functions is very important. Let us understand chain rule with the help of an example.
For example: $\tan \left( {xy} \right)$ is a composite function, where $\tan x$ is an outer function and $xy$ is an inner function. How do we find its derivative? At first, we differentiate the outer function and assume the inner function to be x (if we are differentiating with respect to x). In the next step, we differentiate the inner function.
Hence, correct identification of outer and inner function correctly is very important.
Formula used: 1) $\dfrac{{d\left( x \right)}}{{dx}} = 1$
2) $\dfrac{{d\left( {\tan x} \right)}}{{dx}} = {\sec ^2}x$
Complete step-by-step solution:
We are given an equation $x + \tan \left( {xy} \right) = 0$.
Let us differentiate both the sides with respect to x.
$ \Rightarrow x + \tan \left( {xy} \right) = 0$
Differentiating both the sides with respect to x,
$ \Rightarrow \dfrac{d}{{dx}}\left( {x + \tan \left( {xy} \right)} \right) = \dfrac{{d\left( 0 \right)}}{{dx}}$
$ \Rightarrow 1 + {\sec ^2}\left( {xy} \right) \times \dfrac{{d\left( {xy} \right)}}{{dx}} = 0$ …. (Here, we used chain rule to find the derivative of$\tan \left( {xy} \right)$)
Differentiating using chain rule and product rule,
$ \Rightarrow 1 + {\sec ^2}\left( {xy} \right) \times \left[ {x\dfrac{{dy}}{{dx}} + y} \right] = 0$
Opening the brackets,
$ \Rightarrow 1 + x{\sec ^2}\left( {xy} \right)\dfrac{{dy}}{{dx}} + y{\sec ^2}xy = 0$
Shifting all the terms to the RHS, other than the term containing$\dfrac{{dy}}{{dx}}$,
$ \Rightarrow x{\sec ^2}\left( {xy} \right)\dfrac{{dy}}{{dx}} = - \left( {y{{\sec }^2}xy + 1} \right)$
Now, we will shift the co-efficient of $\dfrac{{dy}}{{dx}}$,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - \left( {y{{\sec }^2}xy + 1} \right)}}{{x{{\sec }^2}xy}}$
Expanding the RHS,
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \left( {\dfrac{{y{{\sec }^2}xy}}{{x{{\sec }^2}xy}} + \dfrac{1}{{x{{\sec }^2}xy}}} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \left( {\dfrac{y}{x} + \dfrac{{{{\cos }^2}xy}}{x}} \right)$ …. $\left( {\dfrac{1}{{\sec x}} = \cos x} \right)$
Hence, $\dfrac{{dy}}{{dx}}$ of $x + \tan \left( {xy} \right) = 0$ is $ - \left( {\dfrac{y}{x} + \dfrac{{{{\cos }^2}xy}}{x}} \right)$.
Note: Chain rule: What is chain rule? This rule is used to find the derivative of composite functions. In a composite function, there is an outer function and an inner function. Correct identification of these functions is very important. Let us understand chain rule with the help of an example.
For example: $\tan \left( {xy} \right)$ is a composite function, where $\tan x$ is an outer function and $xy$ is an inner function. How do we find its derivative? At first, we differentiate the outer function and assume the inner function to be x (if we are differentiating with respect to x). In the next step, we differentiate the inner function.
Hence, correct identification of outer and inner function correctly is very important.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE