Answer
Verified
416.7k+ views
Hint:First of all we will take the given expression and take differentiation with respect to “x” and “y” one by one and then find the factors and place the values of one variable to get the value for the other variable.
Complete step by step solution:
Take the given expression:
$f(x,y) = {x^3} + xy - {y^3}$
Differentiate the above expression with respect to “x”
\[\dfrac{d}{{dx}}f(x,y) = \dfrac{d}{{dx}}({x^3} + xy - {y^3})\]
Apply differentiation to all the terms on the right hand side of the equation inside the bracket.
\[{f_x} = \dfrac{d}{{dx}}({x^3}) + \dfrac{d}{{dx}}(xy) - \dfrac{d}{{dx}}({y^3})\]
Apply the formula in the above equation and place the value in it.
\[{f_x} = 3{x^2} + y\]
To find the critical value in the above equation equal to zero.
\[0 = 3{x^2} + y\] …. (A)
Similarly take derivative in the given expression with respect to “y”
\[\dfrac{d}{{dy}}f(x,y) = \dfrac{d}{{dy}}({x^3} + xy - {y^3})\]
Apply differentiation to all the terms on the right hand side of the equation inside the bracket.
\[{f_y} = \dfrac{d}{{dy}}({x^3}) + \dfrac{d}{{dy}}(xy) - \dfrac{d}{{dy}}({y^3})\]
Apply the formula in the above equation and place the value in it.
\[{f_y} = x - 3{y^2}\]
To find the critical value in the above equation equal to zero.
\[0 = x - 3{y^2}\] …. (B)
Take equation (A)
\[y = - 3{x^2}\]
Place the above value in the equation (B)
\[x - 3{( - 3{x^2})^2} = 0\]
Simplify the above equation-
\[x - 27{x^4} = 0\]
Finding the factors of the above equation.
$ \Rightarrow x(1 - 27{x^3}) = 0$
Implies
$x = 0$ …. (C)
or $1 - 27{x^3} = 0$
Simplify the above equation:
$1 = 27{x^3}$
When term multiplicative on one side is moved to the opposite side, then it goes to the
denominator.
$ \Rightarrow {x^3} = \dfrac{1}{{27}}$
Take a cube-root on both the sides of the equation.
$ \Rightarrow x = \dfrac{1}{3}$ …. (D)
Using the equation (C) and equation (A)
\[0 = 3{x^2} + y\]
Make “y” the subject, when any term is moved from one side to another the sign of the term also changes.
$y = - 3{x^2}$
Place $x = 0$
$ \Rightarrow y = - 3(0)$
Zero multiplied with anything gives zero.
$ \Rightarrow y = 0$ … (E)
Now, Place $x = \dfrac{1}{3}$ in equation (A)
$ \Rightarrow y = - \dfrac{1}{3}$
Hence, the critical points are: $(0,0)$ and $\left( {\dfrac{1}{3}, - \dfrac{1}{3}} \right)$
Note: Be careful about the sign convention when doing simplification. When you move any term from one side to another then the sign of the term also changes. Positive terms become negative and vice-versa.
Complete step by step solution:
Take the given expression:
$f(x,y) = {x^3} + xy - {y^3}$
Differentiate the above expression with respect to “x”
\[\dfrac{d}{{dx}}f(x,y) = \dfrac{d}{{dx}}({x^3} + xy - {y^3})\]
Apply differentiation to all the terms on the right hand side of the equation inside the bracket.
\[{f_x} = \dfrac{d}{{dx}}({x^3}) + \dfrac{d}{{dx}}(xy) - \dfrac{d}{{dx}}({y^3})\]
Apply the formula in the above equation and place the value in it.
\[{f_x} = 3{x^2} + y\]
To find the critical value in the above equation equal to zero.
\[0 = 3{x^2} + y\] …. (A)
Similarly take derivative in the given expression with respect to “y”
\[\dfrac{d}{{dy}}f(x,y) = \dfrac{d}{{dy}}({x^3} + xy - {y^3})\]
Apply differentiation to all the terms on the right hand side of the equation inside the bracket.
\[{f_y} = \dfrac{d}{{dy}}({x^3}) + \dfrac{d}{{dy}}(xy) - \dfrac{d}{{dy}}({y^3})\]
Apply the formula in the above equation and place the value in it.
\[{f_y} = x - 3{y^2}\]
To find the critical value in the above equation equal to zero.
\[0 = x - 3{y^2}\] …. (B)
Take equation (A)
\[y = - 3{x^2}\]
Place the above value in the equation (B)
\[x - 3{( - 3{x^2})^2} = 0\]
Simplify the above equation-
\[x - 27{x^4} = 0\]
Finding the factors of the above equation.
$ \Rightarrow x(1 - 27{x^3}) = 0$
Implies
$x = 0$ …. (C)
or $1 - 27{x^3} = 0$
Simplify the above equation:
$1 = 27{x^3}$
When term multiplicative on one side is moved to the opposite side, then it goes to the
denominator.
$ \Rightarrow {x^3} = \dfrac{1}{{27}}$
Take a cube-root on both the sides of the equation.
$ \Rightarrow x = \dfrac{1}{3}$ …. (D)
Using the equation (C) and equation (A)
\[0 = 3{x^2} + y\]
Make “y” the subject, when any term is moved from one side to another the sign of the term also changes.
$y = - 3{x^2}$
Place $x = 0$
$ \Rightarrow y = - 3(0)$
Zero multiplied with anything gives zero.
$ \Rightarrow y = 0$ … (E)
Now, Place $x = \dfrac{1}{3}$ in equation (A)
$ \Rightarrow y = - \dfrac{1}{3}$
Hence, the critical points are: $(0,0)$ and $\left( {\dfrac{1}{3}, - \dfrac{1}{3}} \right)$
Note: Be careful about the sign convention when doing simplification. When you move any term from one side to another then the sign of the term also changes. Positive terms become negative and vice-versa.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Draw a labelled sketch of the human eye class 12 physics CBSE