Answer
Verified
425.1k+ views
Hint: In order to determine $\cos 67.5^\circ $ using half-angle identity, first we will determine the $\theta $. Then, choose the accurate half-angle identity and resolve the $ \pm $ sign, substitute the values from the trigonometric values from the trigonometric table, then by further evaluation, we will get the required value
Complete step by step solution:
Now, we need to determine $\cos 67.5^\circ $ using half-angle identity.
Therefore, the half-angle identity that we can use here is $1 + \cos \theta = 2{\cos ^2}\dfrac{\theta }{2}$
Let $\dfrac{\theta }{2} = 67.5^\circ $
Then, $\theta = 67.5^\circ \times 2$
$\theta = 135^\circ $
Now, substituting the values in the equation, we have,
$1 + \cos \left( {135^\circ } \right) = 2{\cos ^2}\dfrac{{\left( {135^\circ } \right)}}{2}$
Now, $135^\circ = 180^\circ - 45^\circ $
Thus, $2{\cos ^2}67.5^\circ = 1 + \cos \left( {135^\circ - 45^\circ } \right)$
$2{\cos ^2}67.5^\circ = 1 - \cos 45^\circ $
We know that from trigonometric ratios, $\cos 45^\circ = \dfrac{1}{{\sqrt 2 }}$
Therefore, $2{\cos ^2}67.5^\circ = 1 - \dfrac{1}{{\sqrt 2 }}$
$2{\cos ^2}67.5^\circ = \dfrac{{\sqrt 2 - 1}}{{\sqrt 2 }}$
$2{\cos ^2}67.5^\circ = \dfrac{{\sqrt 2 - 1}}{{\sqrt 2 }} \times \dfrac{{\sqrt 2 }}{{\sqrt 2 }}$
$2{\cos ^2}67.5^\circ = \dfrac{{2 - \sqrt 2 }}{2}$
${\cos ^2}67.5^\circ = \dfrac{{2 - \sqrt 2 }}{4}$
$\cos 67.5^\circ = \pm \sqrt {\dfrac{{2 - \sqrt 2 }}{4}} $
Hence,$\cos 67.5^\circ = \pm \dfrac{{\sqrt {2 - \sqrt 2 } }}{2}$
Note: Special cases of the sum and difference formulas for sine and cosine are known as the double-angle identities and the half-angle identities.
Let us know about the sum and difference formulas for sine and cosine. Three basic trigonometric identities involve the sums of angles. The functions involved in these identities are sine, cosine and tangent. We can use the angle sum identities to determine the function values of any angles. These identities are useful whenever expressions involving trigonometric functions need to be simplified.
The angle sum identities are
$\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b$
$\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$
$\sin \left( {a + b} \right) = \cos a\sin b + \sin a\cos b$
$\sin \left( {a - b} \right) = \cos a\sin b - \sin a\cos b$
$\tan \left( {a + b} \right) = \dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}}$
$\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}$
Trigonometric table involves the relationship with the length and angles of the triangle. It is generally associated with the right-angled triangle, where one of the angles is always $90^\circ $.
The trigonometric double angle formulas give a relationship between the basic trigonometric functions applied to twice an angle in terms of trigonometric functions of the angle itself. The most common double angle formulas are,
$\sin 2\theta = 2\sin \theta \cos \theta $
$\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta $
$\cos 2\theta = 1 - 2{\sin ^2}\theta $
$\cos 2\theta = 2{\cos ^2}\theta - 1$ .
Half-angle formulas allow the expression of trigonometric functions of angles equal to $\dfrac{\theta }{2}$ in terms of $\theta $, which can simplify the functions and make it easier to perform more complex calculations. The most commonly used half angle identities are,
$\cos \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 + \cos \theta }}{2}} $
$\sin \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos \theta }}{2}} $ .
Complete step by step solution:
Now, we need to determine $\cos 67.5^\circ $ using half-angle identity.
Therefore, the half-angle identity that we can use here is $1 + \cos \theta = 2{\cos ^2}\dfrac{\theta }{2}$
Let $\dfrac{\theta }{2} = 67.5^\circ $
Then, $\theta = 67.5^\circ \times 2$
$\theta = 135^\circ $
Now, substituting the values in the equation, we have,
$1 + \cos \left( {135^\circ } \right) = 2{\cos ^2}\dfrac{{\left( {135^\circ } \right)}}{2}$
Now, $135^\circ = 180^\circ - 45^\circ $
Thus, $2{\cos ^2}67.5^\circ = 1 + \cos \left( {135^\circ - 45^\circ } \right)$
$2{\cos ^2}67.5^\circ = 1 - \cos 45^\circ $
We know that from trigonometric ratios, $\cos 45^\circ = \dfrac{1}{{\sqrt 2 }}$
Therefore, $2{\cos ^2}67.5^\circ = 1 - \dfrac{1}{{\sqrt 2 }}$
$2{\cos ^2}67.5^\circ = \dfrac{{\sqrt 2 - 1}}{{\sqrt 2 }}$
$2{\cos ^2}67.5^\circ = \dfrac{{\sqrt 2 - 1}}{{\sqrt 2 }} \times \dfrac{{\sqrt 2 }}{{\sqrt 2 }}$
$2{\cos ^2}67.5^\circ = \dfrac{{2 - \sqrt 2 }}{2}$
${\cos ^2}67.5^\circ = \dfrac{{2 - \sqrt 2 }}{4}$
$\cos 67.5^\circ = \pm \sqrt {\dfrac{{2 - \sqrt 2 }}{4}} $
Hence,$\cos 67.5^\circ = \pm \dfrac{{\sqrt {2 - \sqrt 2 } }}{2}$
Note: Special cases of the sum and difference formulas for sine and cosine are known as the double-angle identities and the half-angle identities.
Let us know about the sum and difference formulas for sine and cosine. Three basic trigonometric identities involve the sums of angles. The functions involved in these identities are sine, cosine and tangent. We can use the angle sum identities to determine the function values of any angles. These identities are useful whenever expressions involving trigonometric functions need to be simplified.
The angle sum identities are
$\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b$
$\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$
$\sin \left( {a + b} \right) = \cos a\sin b + \sin a\cos b$
$\sin \left( {a - b} \right) = \cos a\sin b - \sin a\cos b$
$\tan \left( {a + b} \right) = \dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}}$
$\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}$
Trigonometric table involves the relationship with the length and angles of the triangle. It is generally associated with the right-angled triangle, where one of the angles is always $90^\circ $.
The trigonometric double angle formulas give a relationship between the basic trigonometric functions applied to twice an angle in terms of trigonometric functions of the angle itself. The most common double angle formulas are,
$\sin 2\theta = 2\sin \theta \cos \theta $
$\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta $
$\cos 2\theta = 1 - 2{\sin ^2}\theta $
$\cos 2\theta = 2{\cos ^2}\theta - 1$ .
Half-angle formulas allow the expression of trigonometric functions of angles equal to $\dfrac{\theta }{2}$ in terms of $\theta $, which can simplify the functions and make it easier to perform more complex calculations. The most commonly used half angle identities are,
$\cos \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 + \cos \theta }}{2}} $
$\sin \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos \theta }}{2}} $ .
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE