Find all unit vectors orthogonal to both the vectors given by $(1,2, - 1)$ and $(3,3, - 4)$?
Answer
Verified
439.2k+ views
Hint: The given question requires us to find all unit vectors perpendicular to both the vectors given in the problem. This can be done easily by applying the concepts of vectors as the cross product of two vectors is always perpendicular to both the vectors. Unit vectors can easily be found by dividing a vector by its magnitude.
Complete step by step solution:
Let the required vector be given by $\vec c$.
In the given problem, we are required to first find the position vectors corresponding to the given coordinates.
Position vector of given point $(1,2, - 1)$ is \[\vec a = \hat i + 2\hat j - \hat k\]
Position vector of given point $(3,3, - 4)$is $\vec b = 3\hat i + 3\hat j - 4\hat k$
Now, $\vec c$is orthogonal to both $\vec a$and$\vec b$.
Thus, $\vec c$$ = \vec a \times \vec b$. Now, we have to find the cross product of two vectors. Cross product is found by solving the determinant of coefficients of the rectangular components of the two vectors.
Now, computing the determinant along the first row, we get,
$\vec c$$ = \left| {\text{ }}\hat i{\text{ }}\hat j{\text{ }}\hat k \\
{\text{ }}1{\text{ }}2{\text{ }} - 1 \\
{\text{ }}3{\text{ }}3{\text{ }} - 4 \\ \right|$
$\vec c$$ = \hat i( - 8 - ( - 3)) - \hat j( - 4 - ( - 3)) + \hat k(3 - 6)$
$ \Rightarrow \vec c$$ = \hat i( - 5) - \hat j( - 1) + \hat k( - 3)$
$ \Rightarrow \vec c$$ = - 5\hat i + \hat j - 3\hat k$
Now the required unit vector is $\hat c$. We will find $\hat c$ by dividing $\vec c$ by its magnitude.
Thus, $\hat c = \dfrac{{ - 5\hat i + \hat j - 3\hat k}}{{\sqrt {{{( - 5)}^2} + {{(1)}^2} + {{( - 3)}^2}} }}$
$ \Rightarrow \hat c = \dfrac{{ - 5\hat i + \hat j - 3\hat k}}{{\sqrt {35} }}$
$ \Rightarrow \hat c = \dfrac{{ - 5\hat i}}{{\sqrt {35} }} + \dfrac{{\hat j}}{{\sqrt {35} }} - \dfrac{{3\hat k}}{{\sqrt {35} }}$
So, unit vector perpendicular to both the vectors given by $(1,2, - 1)$ and $(3,3, - 4)$ is $\left( {\dfrac{{ - 5\hat i}}{{\sqrt {35} }} + \dfrac{{\hat j}}{{\sqrt {35} }} - \dfrac{{3\hat k}}{{\sqrt {35} }}} \right)$.
Note: Such type of questions involves concepts of cross product of two vectors. We need to have a strong grip on topics like Vector algebra and Dot and cross product of two vectors so as to solve typical questions from these topics.
Complete step by step solution:
Let the required vector be given by $\vec c$.
In the given problem, we are required to first find the position vectors corresponding to the given coordinates.
Position vector of given point $(1,2, - 1)$ is \[\vec a = \hat i + 2\hat j - \hat k\]
Position vector of given point $(3,3, - 4)$is $\vec b = 3\hat i + 3\hat j - 4\hat k$
Now, $\vec c$is orthogonal to both $\vec a$and$\vec b$.
Thus, $\vec c$$ = \vec a \times \vec b$. Now, we have to find the cross product of two vectors. Cross product is found by solving the determinant of coefficients of the rectangular components of the two vectors.
Now, computing the determinant along the first row, we get,
$\vec c$$ = \left| {\text{ }}\hat i{\text{ }}\hat j{\text{ }}\hat k \\
{\text{ }}1{\text{ }}2{\text{ }} - 1 \\
{\text{ }}3{\text{ }}3{\text{ }} - 4 \\ \right|$
$\vec c$$ = \hat i( - 8 - ( - 3)) - \hat j( - 4 - ( - 3)) + \hat k(3 - 6)$
$ \Rightarrow \vec c$$ = \hat i( - 5) - \hat j( - 1) + \hat k( - 3)$
$ \Rightarrow \vec c$$ = - 5\hat i + \hat j - 3\hat k$
Now the required unit vector is $\hat c$. We will find $\hat c$ by dividing $\vec c$ by its magnitude.
Thus, $\hat c = \dfrac{{ - 5\hat i + \hat j - 3\hat k}}{{\sqrt {{{( - 5)}^2} + {{(1)}^2} + {{( - 3)}^2}} }}$
$ \Rightarrow \hat c = \dfrac{{ - 5\hat i + \hat j - 3\hat k}}{{\sqrt {35} }}$
$ \Rightarrow \hat c = \dfrac{{ - 5\hat i}}{{\sqrt {35} }} + \dfrac{{\hat j}}{{\sqrt {35} }} - \dfrac{{3\hat k}}{{\sqrt {35} }}$
So, unit vector perpendicular to both the vectors given by $(1,2, - 1)$ and $(3,3, - 4)$ is $\left( {\dfrac{{ - 5\hat i}}{{\sqrt {35} }} + \dfrac{{\hat j}}{{\sqrt {35} }} - \dfrac{{3\hat k}}{{\sqrt {35} }}} \right)$.
Note: Such type of questions involves concepts of cross product of two vectors. We need to have a strong grip on topics like Vector algebra and Dot and cross product of two vectors so as to solve typical questions from these topics.
Recently Updated Pages
Which of the following can be used as the halide component class 11 chemistry CBSE
Explain positive negative and zero work Give one example class 11 physics CBSE
There are 8 teams in a certain league and each team class 11 maths CBSE
A block of mass 2M is attached to a massless spring class 11 physics CBSE
Fill in the blanks When current is switched on in a class 11 physics CBSE
How many times a proton is heavier than an electro class 11 physics CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE
What is Environment class 11 chemistry CBSE
Nucleolus is present in which part of the cell class 11 biology CBSE