Find a unit vector perpendicular to both $\vec a$ and $\vec b$, where $\vec a = \hat i - 2\hat j + 3\hat k$ and $\vec b = \hat i + 2\hat j - \hat k$.
Answer
Verified
476.4k+ views
Hint: In cross product (or vector product) of two nonzero vectors $\vec a$ and $\vec b$, the resultant vector is perpendicular to both vectors $\vec a$ and $\vec b$.
So you got the hint, to find a vector perpendicular to two nonzero vectors $\vec a$ and $\vec b$, we have to find the cross product of those two vectors.
Remember that the resultant vector may or may not be a unit vector.
Unit vectors are those vectors whose magnitude is 1.
Therefore, find the unit vector by dividing by vector by its magnitude.
Complete step-by-step answer:
Step 1: Find the cross product of $\vec a$ and $\vec b$.
$\hat a \times \hat b$ is the determinant of the matrix $\left[ {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
1&{ - 2}&3 \\
1&2&{ - 1}
\end{array}} \right]$
$\hat a \times \hat b$ $ = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
1&{ - 2}&3 \\
1&2&{ - 1}
\end{array}} \right|$
\[ \Rightarrow \hat i\left( {2 - 6} \right) - \hat j\left( { - 1 - 3} \right) + \hat k\left( {2 + 2} \right) \]
\[ \Rightarrow \hat i\left( { - 4} \right) - \hat j\left( { - 4} \right) + \hat k\left( 4 \right) \]
\[ \Rightarrow - 4\hat i + 4\hat j + 4\hat k \]
Let $\vec c = \hat a \times \hat b$
Step 2: Find the unit vector $\hat c$:
\[\vec c = - 4\hat i + 4\hat j + 4\hat k\]
Magnitude of \[\vec c\]:
$
\left| {\vec c} \right| = \sqrt {{{\left( { - 4} \right)}^2} + {{\left( 4 \right)}^2} + {{\left( 4 \right)}^2}} \\
\Rightarrow {\text{ }} = \sqrt {16 + 16 + 16} \\
\Rightarrow {\text{ }} = 4\sqrt 3 \\
$
Unit vector $\hat c = \dfrac{{\vec c}}{{\left| {\vec c} \right|}}$
Therefore, $\hat c$ \[ = \dfrac{{ - 4\hat i + 4\hat j + 4\hat k}}{{4\sqrt 3 }}\]
So, $\hat c$\[ = - \dfrac{1}{{\sqrt 3 }}\hat i + \dfrac{1}{{\sqrt 3 }}\hat j + \dfrac{1}{{\sqrt 3 }}\hat k\]
Unit vector perpendicular to both $\vec a$ and $\vec b$, where $\vec a = \hat i - 2\hat j + 3\hat k$ and $\vec b = \hat i + 2\hat j - \hat k$ is \[ - \dfrac{1}{{\sqrt 3 }}\hat i + \dfrac{1}{{\sqrt 3 }}\hat j + \dfrac{1}{{\sqrt 3 }}\hat k\].
Additional Information:
The unit vector $\hat i$ is along the direction of the x-axis, the unit vector $\hat j$ is along the direction of the y-axis, and the unit vector $\hat k$ is along the direction of the z-axis. Thus, $\hat i,{\text{ }}\hat j{\text{ }}\& {\text{ }}\hat k$ are unit vectors mutually perpendicular to each other.
Note: You can check the final answer by finding the magnitude of the vector $\hat c$.
$\left| {\hat c} \right| = $\[\sqrt {{{\left( { - \dfrac{1}{{\sqrt 3 }}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2}} \]
\[= \sqrt {\dfrac{1}{3} + \dfrac{1}{3} + \dfrac{1}{3}} \]
\[ = \sqrt {\dfrac{3}{3}} = \sqrt 1 \]
So you got the hint, to find a vector perpendicular to two nonzero vectors $\vec a$ and $\vec b$, we have to find the cross product of those two vectors.
Remember that the resultant vector may or may not be a unit vector.
Unit vectors are those vectors whose magnitude is 1.
Therefore, find the unit vector by dividing by vector by its magnitude.
Complete step-by-step answer:
Step 1: Find the cross product of $\vec a$ and $\vec b$.
$\hat a \times \hat b$ is the determinant of the matrix $\left[ {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
1&{ - 2}&3 \\
1&2&{ - 1}
\end{array}} \right]$
$\hat a \times \hat b$ $ = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
1&{ - 2}&3 \\
1&2&{ - 1}
\end{array}} \right|$
\[ \Rightarrow \hat i\left( {2 - 6} \right) - \hat j\left( { - 1 - 3} \right) + \hat k\left( {2 + 2} \right) \]
\[ \Rightarrow \hat i\left( { - 4} \right) - \hat j\left( { - 4} \right) + \hat k\left( 4 \right) \]
\[ \Rightarrow - 4\hat i + 4\hat j + 4\hat k \]
Let $\vec c = \hat a \times \hat b$
Step 2: Find the unit vector $\hat c$:
\[\vec c = - 4\hat i + 4\hat j + 4\hat k\]
Magnitude of \[\vec c\]:
$
\left| {\vec c} \right| = \sqrt {{{\left( { - 4} \right)}^2} + {{\left( 4 \right)}^2} + {{\left( 4 \right)}^2}} \\
\Rightarrow {\text{ }} = \sqrt {16 + 16 + 16} \\
\Rightarrow {\text{ }} = 4\sqrt 3 \\
$
Unit vector $\hat c = \dfrac{{\vec c}}{{\left| {\vec c} \right|}}$
Therefore, $\hat c$ \[ = \dfrac{{ - 4\hat i + 4\hat j + 4\hat k}}{{4\sqrt 3 }}\]
So, $\hat c$\[ = - \dfrac{1}{{\sqrt 3 }}\hat i + \dfrac{1}{{\sqrt 3 }}\hat j + \dfrac{1}{{\sqrt 3 }}\hat k\]
Unit vector perpendicular to both $\vec a$ and $\vec b$, where $\vec a = \hat i - 2\hat j + 3\hat k$ and $\vec b = \hat i + 2\hat j - \hat k$ is \[ - \dfrac{1}{{\sqrt 3 }}\hat i + \dfrac{1}{{\sqrt 3 }}\hat j + \dfrac{1}{{\sqrt 3 }}\hat k\].
Additional Information:
The unit vector $\hat i$ is along the direction of the x-axis, the unit vector $\hat j$ is along the direction of the y-axis, and the unit vector $\hat k$ is along the direction of the z-axis. Thus, $\hat i,{\text{ }}\hat j{\text{ }}\& {\text{ }}\hat k$ are unit vectors mutually perpendicular to each other.
Note: You can check the final answer by finding the magnitude of the vector $\hat c$.
$\left| {\hat c} \right| = $\[\sqrt {{{\left( { - \dfrac{1}{{\sqrt 3 }}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2}} \]
\[= \sqrt {\dfrac{1}{3} + \dfrac{1}{3} + \dfrac{1}{3}} \]
\[ = \sqrt {\dfrac{3}{3}} = \sqrt 1 \]
\[ = 1 \]
$\hat a \times \hat b = - \left( {\hat b \times \hat a} \right)$. So, if you have calculated $\hat b \times \hat a$$ = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
1&2&{ - 1} \\
1&{ - 2}&3
\end{array}} \right|$, the resultant vector i.e. \[4\hat i - 4\hat j - 4\hat k\] still be a vector perpendicular to both $\vec a$ and $\vec b$ but in the direction opposite to $\hat a \times \hat b$.
Also, the cross product of two nonzero vectors $\vec a$ and $\vec b$ is the product of the magnitude of both vectors $\vec a$ and $\vec b$, and sine of the angle between them. i.e.
$\hat a \times \hat b = \left| {\hat a} \right|\left| {\hat b} \right|\sin \theta {\text{ }}\hat n$, where $\theta $ is the acute angle between vectors $\vec a$ and $\vec b$. Here $\hat n$ is the unit vector perpendicular to the plane containing vectors $\vec a$ and $\vec b$.
$\hat a \times \hat b = - \left( {\hat b \times \hat a} \right)$. So, if you have calculated $\hat b \times \hat a$$ = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
1&2&{ - 1} \\
1&{ - 2}&3
\end{array}} \right|$, the resultant vector i.e. \[4\hat i - 4\hat j - 4\hat k\] still be a vector perpendicular to both $\vec a$ and $\vec b$ but in the direction opposite to $\hat a \times \hat b$.
Also, the cross product of two nonzero vectors $\vec a$ and $\vec b$ is the product of the magnitude of both vectors $\vec a$ and $\vec b$, and sine of the angle between them. i.e.
$\hat a \times \hat b = \left| {\hat a} \right|\left| {\hat b} \right|\sin \theta {\text{ }}\hat n$, where $\theta $ is the acute angle between vectors $\vec a$ and $\vec b$. Here $\hat n$ is the unit vector perpendicular to the plane containing vectors $\vec a$ and $\vec b$.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE