Answer

Verified

374.4k+ views

**Hint:**In mathematics, a power series (in one variable) is an infinite series. Power series are useful in mathematical analysis, where they arise as Taylor series of infinitely differentiable functions. To solve this question, we should know how to write the power series/ MacLaurin series of a function of form \[\ln \left( 1+x \right)\]. The power series representation for \[\ln \left( 1+x \right)\] is \[\sum\limits_{n=0}^{\infty }{\dfrac{{{(-1)}^{n}}{{x}^{n+1}}}{n+1}}\]. Also to find the radius of convergence, use the ratio test which states that if \[\displaystyle \lim_{x \to \infty }\left| \dfrac{{{a}_{n+1}}}{{{a}_{n}}} \right|<1\], then \[\sum\limits_{n=0}^{\infty }{{{a}_{n}}}\] converges.

**Complete step by step solution:**

We are asked to express the power series expansion of \[\ln \left( 1-{{x}^{2}} \right)\], and to find the radius of convergence. We know that power series representation for \[\ln \left( 1+x \right)\] is \[\sum\limits_{n=0}^{\infty }{\dfrac{{{(-1)}^{n}}{{x}^{n+1}}}{n+1}}\].

To find the representation for \[\ln \left( 1-{{x}^{2}} \right)\], we substitute \[-{{x}^{2}}\] at the place of x in the summation formula, by doing this we get

\[\Rightarrow \sum\limits_{n=0}^{\infty }{\dfrac{{{\left( -1 \right)}^{n}}{{\left( -{{x}^{2}} \right)}^{n+1}}}{n+1}}\]

Using the exponential property \[{{\left( ab \right)}^{n}}={{a}^{n}}{{b}^{n}}\], the above expression can also be written as

\[\Rightarrow \sum\limits_{n=0}^{\infty }{\dfrac{{{\left( -1 \right)}^{n}}{{\left( -1 \right)}^{n+1}}{{\left( {{x}^{2}} \right)}^{n+1}}}{n+1}}\]

Again using the property \[{{\left( ab \right)}^{n}}={{a}^{n}}{{b}^{n}}\] in the reverse direction this time, we can simplify the above expression as

\[\Rightarrow \sum\limits_{n=0}^{\infty }{\dfrac{{{\left( -1 \right)}^{2n+1}}{{\left( x \right)}^{2n+2}}}{n+1}}\]

As 2n+1 is an odd number, \[{{\left( -1 \right)}^{2n+1}}\] will always be \[-1\]. Thus, we get

\[\Rightarrow \sum\limits_{n=0}^{\infty }{\dfrac{-{{\left( x \right)}^{2n+2}}}{n+1}}\]

To find the radius of convergence, use the ratio test which states that if \[\displaystyle \lim_{x \to \infty }\left| \dfrac{{{a}_{n+1}}}{{{a}_{n}}} \right|<1\], then \[\sum\limits_{n=0}^{\infty }{{{a}_{n}}}\] converges

\[\Rightarrow \displaystyle \lim_{x \to \infty }\left| \dfrac{\dfrac{-{{\left( x \right)}^{2\left( n+1 \right)+2}}}{\left( n+1 \right)+1}}{\dfrac{-{{\left( x \right)}^{2n+2}}}{n+1}} \right|<1\]

Simplifying the above expression, we get

\[\Rightarrow \displaystyle \lim_{x \to \infty }\left| \dfrac{-{{\left( x \right)}^{2n+4}}}{n+2}\times \dfrac{n+1}{-{{\left( x \right)}^{2n+2}}} \right|<1\]

\[\Rightarrow \left| {{x}^{2}} \right|<1\]

Solving the above inequality, we get

\[\Rightarrow -1< x <1\]

Thus, the convergence radius of the given expression is 1.

**Note:**

To solve these types of problems, one should know the expansions of different types of series, for example, the Taylor series. The Maclaurin series is a special case of the Taylor series. Calculation mistakes should be avoided.

Recently Updated Pages

Cryolite and fluorspar are mixed with Al2O3 during class 11 chemistry CBSE

Select the smallest atom A F B Cl C Br D I class 11 chemistry CBSE

The best reagent to convert pent 3 en 2 ol and pent class 11 chemistry CBSE

Reverse process of sublimation is aFusion bCondensation class 11 chemistry CBSE

The best and latest technique for isolation purification class 11 chemistry CBSE

Hydrochloric acid is a Strong acid b Weak acid c Strong class 11 chemistry CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Define limiting molar conductivity Why does the conductivity class 12 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Name 10 Living and Non living things class 9 biology CBSE

The Buddhist universities of Nalanda and Vikramshila class 7 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE