Answer

Verified

417k+ views

**Hint:**In mathematics, a power series (in one variable) is an infinite series. Power series are useful in mathematical analysis, where they arise as Taylor series of infinitely differentiable functions. To solve this question, we should know how to write the power series/ MacLaurin series of a function of form \[\ln \left( 1+x \right)\]. The power series representation for \[\ln \left( 1+x \right)\] is \[\sum\limits_{n=0}^{\infty }{\dfrac{{{(-1)}^{n}}{{x}^{n+1}}}{n+1}}\]. Also to find the radius of convergence, use the ratio test which states that if \[\displaystyle \lim_{x \to \infty }\left| \dfrac{{{a}_{n+1}}}{{{a}_{n}}} \right|<1\], then \[\sum\limits_{n=0}^{\infty }{{{a}_{n}}}\] converges.

**Complete step by step solution:**

We are asked to express the power series expansion of \[\ln \left( 1-{{x}^{2}} \right)\], and to find the radius of convergence. We know that power series representation for \[\ln \left( 1+x \right)\] is \[\sum\limits_{n=0}^{\infty }{\dfrac{{{(-1)}^{n}}{{x}^{n+1}}}{n+1}}\].

To find the representation for \[\ln \left( 1-{{x}^{2}} \right)\], we substitute \[-{{x}^{2}}\] at the place of x in the summation formula, by doing this we get

\[\Rightarrow \sum\limits_{n=0}^{\infty }{\dfrac{{{\left( -1 \right)}^{n}}{{\left( -{{x}^{2}} \right)}^{n+1}}}{n+1}}\]

Using the exponential property \[{{\left( ab \right)}^{n}}={{a}^{n}}{{b}^{n}}\], the above expression can also be written as

\[\Rightarrow \sum\limits_{n=0}^{\infty }{\dfrac{{{\left( -1 \right)}^{n}}{{\left( -1 \right)}^{n+1}}{{\left( {{x}^{2}} \right)}^{n+1}}}{n+1}}\]

Again using the property \[{{\left( ab \right)}^{n}}={{a}^{n}}{{b}^{n}}\] in the reverse direction this time, we can simplify the above expression as

\[\Rightarrow \sum\limits_{n=0}^{\infty }{\dfrac{{{\left( -1 \right)}^{2n+1}}{{\left( x \right)}^{2n+2}}}{n+1}}\]

As 2n+1 is an odd number, \[{{\left( -1 \right)}^{2n+1}}\] will always be \[-1\]. Thus, we get

\[\Rightarrow \sum\limits_{n=0}^{\infty }{\dfrac{-{{\left( x \right)}^{2n+2}}}{n+1}}\]

To find the radius of convergence, use the ratio test which states that if \[\displaystyle \lim_{x \to \infty }\left| \dfrac{{{a}_{n+1}}}{{{a}_{n}}} \right|<1\], then \[\sum\limits_{n=0}^{\infty }{{{a}_{n}}}\] converges

\[\Rightarrow \displaystyle \lim_{x \to \infty }\left| \dfrac{\dfrac{-{{\left( x \right)}^{2\left( n+1 \right)+2}}}{\left( n+1 \right)+1}}{\dfrac{-{{\left( x \right)}^{2n+2}}}{n+1}} \right|<1\]

Simplifying the above expression, we get

\[\Rightarrow \displaystyle \lim_{x \to \infty }\left| \dfrac{-{{\left( x \right)}^{2n+4}}}{n+2}\times \dfrac{n+1}{-{{\left( x \right)}^{2n+2}}} \right|<1\]

\[\Rightarrow \left| {{x}^{2}} \right|<1\]

Solving the above inequality, we get

\[\Rightarrow -1< x <1\]

Thus, the convergence radius of the given expression is 1.

**Note:**

To solve these types of problems, one should know the expansions of different types of series, for example, the Taylor series. The Maclaurin series is a special case of the Taylor series. Calculation mistakes should be avoided.

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

How do you graph the function fx 4x class 9 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

The only snake that builds a nest is a Krait b King class 11 biology CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Why is there a time difference of about 5 hours between class 10 social science CBSE

Which places in India experience sunrise first and class 9 social science CBSE