
Find a, b and n in the expansion of ${{\left( a+b \right)}^{n}}$ if the first three terms of the expression are 729, 7290 and 30375 respectively.
Answer
574.5k+ views
Hint: We know that ${{\left( r+1 \right)}^{th}}$ term in the expansion of ${{\left( a+b \right)}^{n}}$ is given by $^{n+1}{{C}_{r}}{{a}^{n}}{{b}^{r}}$ . hence we will write the first three terms and since we know if the first three terms of the expression are 729, 7290 and 30375 respectively, we will get three equations. Now we will solve the equations by dividing and hence find the value of a, b and n.
Complete step-by-step answer:
Now we know that the binomial expansion of ${{\left( a+b \right)}^{n}}{{=}^{n}}{{C}_{0}}{{a}^{b}}{{b}^{0}}{{+}^{n}}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{{.....}^{n}}{{C}_{n}}{{a}^{0}}{{b}^{n}}$
Hence the ${{\left( r+1 \right)}^{th}}$ term is given by $^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}$ .
Now the first three terms are given to be 729, 7290 and 30375 respectively.
Hence we get
$\begin{align}
& ^{n}{{C}_{0}}{{a}^{n}}{{b}^{0}}=729 \\
& \Rightarrow {{a}^{n}}=729..............(1) \\
\end{align}$
Now
$\begin{align}
& ^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}=7290 \\
& {{\Rightarrow }^{n}}{{C}_{1}}{{a}^{n-1}}b=7290..............\left( 2 \right) \\
\end{align}$
And also
$^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}=30375..............\left( 3 \right)$
Now dividing equation (1) by equation (2)
\[\dfrac{{{a}^{n}}}{^{n}{{C}_{1}}{{a}^{n-1}}b}=\dfrac{729}{7290}\]
We know that $^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}$ hence we get
\[\begin{align}
& \dfrac{{{a}^{n}}}{\dfrac{n!}{1!\left( n-1 \right)!}{{a}^{n-1}}b}=\dfrac{1}{10} \\
& \dfrac{{{a}^{n}}}{\dfrac{n\left( n-1 \right)!}{\left( n-1 \right)!}{{a}^{n-1}}b}=\dfrac{1}{10} \\
& \dfrac{{{a}^{n}}}{n{{a}^{n-1}}b}=\dfrac{1}{10} \\
\end{align}\]
Now we know that $\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}$ , hence we get.
\[\begin{align}
& \\
& \dfrac{{{a}^{n-(n-1)}}}{nb}=\dfrac{1}{10} \\
& \dfrac{a}{nb}=\dfrac{1}{10}.......................(4) \\
\end{align}\]
Now dividing equation (2) by equation (3) we get
$\dfrac{^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}}{^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}}=\dfrac{7290}{3075}$
Ow again using $^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}$ hence we get
$\begin{align}
& \dfrac{\dfrac{n!}{\left( n-1 \right)!1!}{{a}^{n-1}}{{b}^{1}}}{\dfrac{n!}{\left( n-2 \right)!2!}{{a}^{n-2}}{{b}^{2}}}=\dfrac{7290}{30375} \\
& \Rightarrow \dfrac{\dfrac{n\left( n-1 \right)!}{\left( n-1 \right)!1!}{{a}^{n-1}}{{b}^{1}}}{\dfrac{n\left( n-1 \right)\left( n-2 \right)!}{\left( n-2 \right)!2!}{{a}^{n-2}}{{b}^{2}}}=\dfrac{7290}{30375} \\
\end{align}$
Now we know that $\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}$ hence we get
$\begin{align}
& \Rightarrow \dfrac{n{{a}^{n-1-\left( n-2 \right)}}{{b}^{1-2}}}{\dfrac{n\left( n-1 \right)}{2!}}=\dfrac{7290}{30375} \\
& \Rightarrow \dfrac{a{{b}^{-1}}}{\dfrac{\left( n-1 \right)}{2}}=\dfrac{6}{25} \\
\end{align}$
Now multiplying the numerator and denominator of LHS by 2 we get
$\dfrac{2a{{b}^{-1}}}{n-1}=\dfrac{6}{25}$
\[\Rightarrow \dfrac{a{{b}^{-1}}}{n-1}=\dfrac{3}{25}.....................(5)\]
Now dividing equation (5) by equation (4) we get.
\[\begin{align}
& \dfrac{a{{b}^{-1}}}{n-1}\div \dfrac{a}{nb}=\dfrac{3}{25}\div \dfrac{1}{10} \\
& \Rightarrow \dfrac{a{{b}^{-1}}}{n-1}\times \dfrac{nb}{a}=\dfrac{3}{25}\times \dfrac{10}{1} \\
& \Rightarrow \dfrac{n}{n-1}=\dfrac{6}{5} \\
\end{align}\]
Cross multiplying the above equation we get
$5n=6n-6$
Rearranging the terms we get
$6n-5n=6$
Hence we have $n=6$
Now substituting n = 6 in equation (1) we get
$\begin{align}
& {{a}^{6}}=729 \\
& \Rightarrow a=\sqrt[6]{729}=\sqrt[6]{3\times 3\times 3\times 3\times 3\times 3} \\
& \Rightarrow a=3 \\
\end{align}$
Hence we have a = 3 and n = 6.
Now substituting these values in equation (4) we get
$\dfrac{3}{6b}=\dfrac{1}{10}$
Cross multiplying the above equation we get
$30=6b$
Dividing throughout by 6 we get the value of b = 5.
Hence we have a = 3, b = 5, n = 6.
Note: Note that while calculating ${{\left( r+1 \right)}^{th}}$ term of expansion of ${{\left( a+b \right)}^{n}}$ we say that ${{\left( r+1 \right)}^{th}}$ term is $^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}$ hence note that if we want to calculate ${{r}^{th}}$ term we will have to substitute $r-1$ in formula $^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}$ and hence the formula will be $^{n}{{C}_{r-1}}{{a}^{n-\left( r-1 \right)}}{{b}^{r-1}}$
Complete step-by-step answer:
Now we know that the binomial expansion of ${{\left( a+b \right)}^{n}}{{=}^{n}}{{C}_{0}}{{a}^{b}}{{b}^{0}}{{+}^{n}}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{{.....}^{n}}{{C}_{n}}{{a}^{0}}{{b}^{n}}$
Hence the ${{\left( r+1 \right)}^{th}}$ term is given by $^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}$ .
Now the first three terms are given to be 729, 7290 and 30375 respectively.
Hence we get
$\begin{align}
& ^{n}{{C}_{0}}{{a}^{n}}{{b}^{0}}=729 \\
& \Rightarrow {{a}^{n}}=729..............(1) \\
\end{align}$
Now
$\begin{align}
& ^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}=7290 \\
& {{\Rightarrow }^{n}}{{C}_{1}}{{a}^{n-1}}b=7290..............\left( 2 \right) \\
\end{align}$
And also
$^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}=30375..............\left( 3 \right)$
Now dividing equation (1) by equation (2)
\[\dfrac{{{a}^{n}}}{^{n}{{C}_{1}}{{a}^{n-1}}b}=\dfrac{729}{7290}\]
We know that $^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}$ hence we get
\[\begin{align}
& \dfrac{{{a}^{n}}}{\dfrac{n!}{1!\left( n-1 \right)!}{{a}^{n-1}}b}=\dfrac{1}{10} \\
& \dfrac{{{a}^{n}}}{\dfrac{n\left( n-1 \right)!}{\left( n-1 \right)!}{{a}^{n-1}}b}=\dfrac{1}{10} \\
& \dfrac{{{a}^{n}}}{n{{a}^{n-1}}b}=\dfrac{1}{10} \\
\end{align}\]
Now we know that $\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}$ , hence we get.
\[\begin{align}
& \\
& \dfrac{{{a}^{n-(n-1)}}}{nb}=\dfrac{1}{10} \\
& \dfrac{a}{nb}=\dfrac{1}{10}.......................(4) \\
\end{align}\]
Now dividing equation (2) by equation (3) we get
$\dfrac{^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}}{^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}}=\dfrac{7290}{3075}$
Ow again using $^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}$ hence we get
$\begin{align}
& \dfrac{\dfrac{n!}{\left( n-1 \right)!1!}{{a}^{n-1}}{{b}^{1}}}{\dfrac{n!}{\left( n-2 \right)!2!}{{a}^{n-2}}{{b}^{2}}}=\dfrac{7290}{30375} \\
& \Rightarrow \dfrac{\dfrac{n\left( n-1 \right)!}{\left( n-1 \right)!1!}{{a}^{n-1}}{{b}^{1}}}{\dfrac{n\left( n-1 \right)\left( n-2 \right)!}{\left( n-2 \right)!2!}{{a}^{n-2}}{{b}^{2}}}=\dfrac{7290}{30375} \\
\end{align}$
Now we know that $\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}$ hence we get
$\begin{align}
& \Rightarrow \dfrac{n{{a}^{n-1-\left( n-2 \right)}}{{b}^{1-2}}}{\dfrac{n\left( n-1 \right)}{2!}}=\dfrac{7290}{30375} \\
& \Rightarrow \dfrac{a{{b}^{-1}}}{\dfrac{\left( n-1 \right)}{2}}=\dfrac{6}{25} \\
\end{align}$
Now multiplying the numerator and denominator of LHS by 2 we get
$\dfrac{2a{{b}^{-1}}}{n-1}=\dfrac{6}{25}$
\[\Rightarrow \dfrac{a{{b}^{-1}}}{n-1}=\dfrac{3}{25}.....................(5)\]
Now dividing equation (5) by equation (4) we get.
\[\begin{align}
& \dfrac{a{{b}^{-1}}}{n-1}\div \dfrac{a}{nb}=\dfrac{3}{25}\div \dfrac{1}{10} \\
& \Rightarrow \dfrac{a{{b}^{-1}}}{n-1}\times \dfrac{nb}{a}=\dfrac{3}{25}\times \dfrac{10}{1} \\
& \Rightarrow \dfrac{n}{n-1}=\dfrac{6}{5} \\
\end{align}\]
Cross multiplying the above equation we get
$5n=6n-6$
Rearranging the terms we get
$6n-5n=6$
Hence we have $n=6$
Now substituting n = 6 in equation (1) we get
$\begin{align}
& {{a}^{6}}=729 \\
& \Rightarrow a=\sqrt[6]{729}=\sqrt[6]{3\times 3\times 3\times 3\times 3\times 3} \\
& \Rightarrow a=3 \\
\end{align}$
Hence we have a = 3 and n = 6.
Now substituting these values in equation (4) we get
$\dfrac{3}{6b}=\dfrac{1}{10}$
Cross multiplying the above equation we get
$30=6b$
Dividing throughout by 6 we get the value of b = 5.
Hence we have a = 3, b = 5, n = 6.
Note: Note that while calculating ${{\left( r+1 \right)}^{th}}$ term of expansion of ${{\left( a+b \right)}^{n}}$ we say that ${{\left( r+1 \right)}^{th}}$ term is $^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}$ hence note that if we want to calculate ${{r}^{th}}$ term we will have to substitute $r-1$ in formula $^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}$ and hence the formula will be $^{n}{{C}_{r-1}}{{a}^{n-\left( r-1 \right)}}{{b}^{r-1}}$
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

