Answer
Verified
445.2k+ views
Hint: Obtain the final velocity of the electron by equating the equations for the kinetic energy of the moving electron and the energy of the electron accelerated by applying a potential.
Complete step by step answer:
In the question, the potential through which an electron is accelerated is given. The initial velocity is zero. You have to find the final velocity of the electron.
When an electron is accelerated by applying a potential, the energy of the electron is given by the expression \[{\text{E = eV }}...{\text{ }}...\left( 1 \right)\].
Here, E is the energy of the electron, e is the charge on the electron and V is the potential through which the electron is accelerated.
When an electron is moving with a speed u, its kinetic energy is given by the expression \[{\text{E = }}\dfrac{1}{2}{\text{m}}{{\text{u}}^2}{\text{ }}...{\text{ }}...\left( 2 \right)\].
Here, E is the kinetic energy, m is the mass of the electron and u is the velocity of the electron.
But the energies represented by two equations (1) and (2) are the same.
\[{\text{eV = }}\dfrac{1}{2}{\text{m}}{{\text{u}}^2} \\
{{\text{u}}^2} = \dfrac{{{\text{2eV}}}}{{\text{m}}} \\
{\text{u}} = \sqrt {\dfrac{{{\text{2eV}}}}{{\text{m}}}} \\\]
Substitute values in the above expression and calculate the final velocity of the electron.
\[{\text{u}} = \sqrt {\dfrac{{{\text{2eV}}}}{{\text{m}}}} \\
= \sqrt {\dfrac{{{\text{2}} \times {\text{1}}{\text{.6}} \times {\text{1}}{{\text{0}}^{ - 19}} \times {\text{1600}}}}{{9.1 \times {{10}^{ - 31}}}}} \\
= 2.37 \times {10^7}{\text{ m/s}} \\\]
Thus, the final velocity of an electron is \[2.37 \times {10^7}{\text{ m/s}}\].
Hence, the option A ) is the correct option.
Note: When an electric field is applied to the electron at rest, the electron is accelerated. The kinetic energy of the electron after acceleration is equal to the energy of the electron in presence of the applied electric field.
Complete step by step answer:
In the question, the potential through which an electron is accelerated is given. The initial velocity is zero. You have to find the final velocity of the electron.
When an electron is accelerated by applying a potential, the energy of the electron is given by the expression \[{\text{E = eV }}...{\text{ }}...\left( 1 \right)\].
Here, E is the energy of the electron, e is the charge on the electron and V is the potential through which the electron is accelerated.
When an electron is moving with a speed u, its kinetic energy is given by the expression \[{\text{E = }}\dfrac{1}{2}{\text{m}}{{\text{u}}^2}{\text{ }}...{\text{ }}...\left( 2 \right)\].
Here, E is the kinetic energy, m is the mass of the electron and u is the velocity of the electron.
But the energies represented by two equations (1) and (2) are the same.
\[{\text{eV = }}\dfrac{1}{2}{\text{m}}{{\text{u}}^2} \\
{{\text{u}}^2} = \dfrac{{{\text{2eV}}}}{{\text{m}}} \\
{\text{u}} = \sqrt {\dfrac{{{\text{2eV}}}}{{\text{m}}}} \\\]
Substitute values in the above expression and calculate the final velocity of the electron.
\[{\text{u}} = \sqrt {\dfrac{{{\text{2eV}}}}{{\text{m}}}} \\
= \sqrt {\dfrac{{{\text{2}} \times {\text{1}}{\text{.6}} \times {\text{1}}{{\text{0}}^{ - 19}} \times {\text{1600}}}}{{9.1 \times {{10}^{ - 31}}}}} \\
= 2.37 \times {10^7}{\text{ m/s}} \\\]
Thus, the final velocity of an electron is \[2.37 \times {10^7}{\text{ m/s}}\].
Hence, the option A ) is the correct option.
Note: When an electric field is applied to the electron at rest, the electron is accelerated. The kinetic energy of the electron after acceleration is equal to the energy of the electron in presence of the applied electric field.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
The states of India which do not have an International class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Name the three parallel ranges of the Himalayas Describe class 9 social science CBSE