
How many factors of \[{2^5} \times {3^6} \times {5^2}\] are perfect squares?
A. 24
B. 12
C. 16
D. 22
Answer
580.8k+ views
Hint: First of all, find the possible number of ways in which perfect square factors of \[{2^5},{3^6},{5^2}\] can be arranged individually. Then use the multiplicative principle of permutations to get the required answer. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
For a perfect square, the power of each should be even.
The possible factors of \[{2^5}\] are \[{2^0},{2^1},{2^2},{2^3},{2^4},{2^5}\]
So, the possible perfect square factors of \[{2^5}\] are \[{2^0},{2^2},{2^4}\].
Therefore, possible number of ways of arranging the perfect square factors of \[{2^5}\] = 3
The possible factors of \[{3^6}\] are \[{3^0},{3^1},{3^2},{3^3},{3^4},{3^5},{3^6}\]
So, the possible perfect square factors of \[{3^6}\] are \[{3^0},{3^2},{3^4},{3^6}\].
Therefore, possible number of ways of arranging the perfect square factors of \[{3^6}\] = 4
The possible factors of \[{5^2}\] are \[{5^0},{5^1},{5^2}\]
So, the possible perfect square factors of \[{5^2}\] are \[{5^0},{5^2}\].
Therefore, possible number of ways of arranging the perfect square factors of \[{5^2}\] = 2
By using multiplicative principle of permutations, we have
The total number of ways of arranging the perfect square factors of \[{2^5} \times {3^6} \times {5^2}\] are \[3 \times 4 \times 2 = 24\]
Hence there are 24 factors of \[{2^5} \times {3^6} \times {5^2}\] which are perfect squares.
Thus, the correct option is A. 24
Note: In this problem we have used multiplicative principle permutations i.e., if there are \[x\] number of ways of arranging one thing and\[y\] number of ways of arranging another, then the total number of ways of arranging both the things is given in \[xy\] number of ways.
Complete step-by-step answer:
For a perfect square, the power of each should be even.
The possible factors of \[{2^5}\] are \[{2^0},{2^1},{2^2},{2^3},{2^4},{2^5}\]
So, the possible perfect square factors of \[{2^5}\] are \[{2^0},{2^2},{2^4}\].
Therefore, possible number of ways of arranging the perfect square factors of \[{2^5}\] = 3
The possible factors of \[{3^6}\] are \[{3^0},{3^1},{3^2},{3^3},{3^4},{3^5},{3^6}\]
So, the possible perfect square factors of \[{3^6}\] are \[{3^0},{3^2},{3^4},{3^6}\].
Therefore, possible number of ways of arranging the perfect square factors of \[{3^6}\] = 4
The possible factors of \[{5^2}\] are \[{5^0},{5^1},{5^2}\]
So, the possible perfect square factors of \[{5^2}\] are \[{5^0},{5^2}\].
Therefore, possible number of ways of arranging the perfect square factors of \[{5^2}\] = 2
By using multiplicative principle of permutations, we have
The total number of ways of arranging the perfect square factors of \[{2^5} \times {3^6} \times {5^2}\] are \[3 \times 4 \times 2 = 24\]
Hence there are 24 factors of \[{2^5} \times {3^6} \times {5^2}\] which are perfect squares.
Thus, the correct option is A. 24
Note: In this problem we have used multiplicative principle permutations i.e., if there are \[x\] number of ways of arranging one thing and\[y\] number of ways of arranging another, then the total number of ways of arranging both the things is given in \[xy\] number of ways.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

