
How do you factor quadratic equations with two variables?
Answer
538.8k+ views
Hint:Factoring reduces the higher degree equation into its linear equation. In the above given question, we need to reduce the quadratic equation into its simplest form in such a way that addition of products of the factors of first term and last should be equal to the middle one.
Complete step by step solution:
\[a{x^2} + bxy + c{y^2} + dx + ey + f = 0\] is a general way of writing quadratic equations where a, b c,d,e and f are the numbers where $a,c \ne 0$
Now we can take can example of an equation,
\[2{x^2} + 7xy - 15{y^2}\]
In the above expression,
a=2, b=7, c=-15 d=0 e=0 f=0
First step is by multiplying the term \[2{x^2}\] and the constant term -15, we get \[ - 30{x^2}\].
After this, factors of \[ - 30{x^2}\] should be calculated in such a way that their addition should be equal to 7xy.
Factors of -30 can be -3 and 10
where \[ - 3xy + 10xy = 7xy\].
So, further we write the equation by equating it with zero and splitting the middle term according to the factors.
\[
\Rightarrow 2{x^2} + 7xy - 15{y^2} = 0 \\
\Rightarrow 2{x^2} - 3xy + 10xy - 15{y^2} = 0 \\
\\
\]
Now, by grouping the first and last two terms we get common factors.
\[
\Rightarrow \left( {2x - 3y} \right) + 5y\left( {2x - 3y} \right) = 0 \\
\\
\]
Taking x common from the first group and 1 common from the second we get the above equation.
We can further solve it we get,
\[
\Rightarrow \left( {x + 5y} \right)(2x - 3y) = 0 \\
\\
\]
So here we get the above reduced form.
Note: An important thing to note is that suppose there is a trinomial expression given which has leading coefficients having perfect squares then we can bring the terms by writing it in perfect square then using the formula of ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$.
Complete step by step solution:
\[a{x^2} + bxy + c{y^2} + dx + ey + f = 0\] is a general way of writing quadratic equations where a, b c,d,e and f are the numbers where $a,c \ne 0$
Now we can take can example of an equation,
\[2{x^2} + 7xy - 15{y^2}\]
In the above expression,
a=2, b=7, c=-15 d=0 e=0 f=0
First step is by multiplying the term \[2{x^2}\] and the constant term -15, we get \[ - 30{x^2}\].
After this, factors of \[ - 30{x^2}\] should be calculated in such a way that their addition should be equal to 7xy.
Factors of -30 can be -3 and 10
where \[ - 3xy + 10xy = 7xy\].
So, further we write the equation by equating it with zero and splitting the middle term according to the factors.
\[
\Rightarrow 2{x^2} + 7xy - 15{y^2} = 0 \\
\Rightarrow 2{x^2} - 3xy + 10xy - 15{y^2} = 0 \\
\\
\]
Now, by grouping the first and last two terms we get common factors.
\[
\Rightarrow \left( {2x - 3y} \right) + 5y\left( {2x - 3y} \right) = 0 \\
\\
\]
Taking x common from the first group and 1 common from the second we get the above equation.
We can further solve it we get,
\[
\Rightarrow \left( {x + 5y} \right)(2x - 3y) = 0 \\
\\
\]
So here we get the above reduced form.
Note: An important thing to note is that suppose there is a trinomial expression given which has leading coefficients having perfect squares then we can bring the terms by writing it in perfect square then using the formula of ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

