Factor and use the zero-product property to find the roots of the following quadratic equation.
(a) \[0={{x}^{2}}-7x+12\]
(b) \[0=6{{x}^{2}}-23x+20\]
(c) \[0={{x}^{2}}-9\]
(d) \[0={{x}^{2}}+12x+36\]
Answer
Verified
438.6k+ views
Hint: First understand the definition of zero product property. To factorize the quadratic expression in (a) and (b) apply the middle term split method. Use the algebraic identity: - \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\] to factorize the expression in (c). For (d) use the formula: - \[{{a}^{2}}+2ab+{{b}^{2}}={{\left( a+b \right)}^{2}}\] for factorization.
Complete step-by-step solution:
Here, we have been provided with four quadratic equations and we are asked to factorize them and use the zero-product property to find the roots. But first we need to know about the zero-product property.
Now, in mathematics, the zero product property states that if m and n are two non – zero numbers then their product will not be zero. In other words, if \[m\times n=0\] then either m = 0 and n = 0.
Now, let us come to the quadratic equations one – by – one.
(a) \[0={{x}^{2}}-7x+12\]
\[\Rightarrow {{x}^{2}}-7x+12=0\]
Using the middle term split method, we have,
\[\begin{align}
& \Rightarrow {{x}^{2}}-4x-3x+12=0 \\
& \Rightarrow \left( x-4 \right)\left( x-3 \right)=0 \\
\end{align}\]
Applying the zero-product property, we get,
\[\Rightarrow \] either x = 4 or x = 3
Therefore, x = 4 or x = 3 is the solution.
(b) \[0=6{{x}^{2}}-23x+20\]
\[\Rightarrow 6{{x}^{2}}-23x+20=0\]
Using the middle term split method, we get,
\[\begin{align}
& \Rightarrow 6{{x}^{2}}-15x-8x+20=0 \\
& \Rightarrow 3x\left( 2x-5 \right)-4\left( 2x-5 \right)=0 \\
& \Rightarrow \left( 3x-4 \right)\left( 2x-5 \right)=0 \\
\end{align}\]
Applying the zero-product property, we get,
\[\Rightarrow \] either \[x=\dfrac{4}{3}\] or \[x=\dfrac{5}{2}\]
Therefore, \[x=\dfrac{4}{3}\] or \[x=\dfrac{5}{2}\] is the solution.
(c) \[0={{x}^{2}}-9\]
\[\begin{align}
& \Rightarrow {{x}^{2}}-9=0 \\
& \Rightarrow {{x}^{2}}-{{3}^{2}}=0 \\
\end{align}\]
Using the algebraic identity: - \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\], we get,
\[\Rightarrow \] either x = -3 or x = 3
Therefore, x = -3 or x = 3 is the solution.
(d) \[0={{x}^{2}}+12x+36\]
\[\Rightarrow {{x}^{2}}+12x+36=0\]
This can be written as: -
\[\Rightarrow {{x}^{2}}+2\times 6\times x+{{6}^{2}}=0\]
Using the algebraic identity: - \[{{a}^{2}}+2ab+{{b}^{2}}={{\left( a+b \right)}^{2}}\], we get,
\[\begin{align}
& \Rightarrow {{\left( x+6 \right)}^{2}}=0 \\
& \Rightarrow \left( x+6 \right)\left( x+6 \right)=0 \\
\end{align}\]
Applying the zero-product property, we get,
\[\begin{align}
& \Rightarrow x+6=0 \\
& \Rightarrow x=-6 \\
\end{align}\]
Therefore, $x = -6$ is the solution.
Note: One must not apply the discriminant formula to solve the above questions because if you will do so then according to the question it will be considered as a wrong approach. This is because we have to factorize the equations and then use the zero-product property but the discriminant formula will directly give the values of x without factoring. You must remember the zero-product property, middle term split method and all the algebraic identities.
Complete step-by-step solution:
Here, we have been provided with four quadratic equations and we are asked to factorize them and use the zero-product property to find the roots. But first we need to know about the zero-product property.
Now, in mathematics, the zero product property states that if m and n are two non – zero numbers then their product will not be zero. In other words, if \[m\times n=0\] then either m = 0 and n = 0.
Now, let us come to the quadratic equations one – by – one.
(a) \[0={{x}^{2}}-7x+12\]
\[\Rightarrow {{x}^{2}}-7x+12=0\]
Using the middle term split method, we have,
\[\begin{align}
& \Rightarrow {{x}^{2}}-4x-3x+12=0 \\
& \Rightarrow \left( x-4 \right)\left( x-3 \right)=0 \\
\end{align}\]
Applying the zero-product property, we get,
\[\Rightarrow \] either x = 4 or x = 3
Therefore, x = 4 or x = 3 is the solution.
(b) \[0=6{{x}^{2}}-23x+20\]
\[\Rightarrow 6{{x}^{2}}-23x+20=0\]
Using the middle term split method, we get,
\[\begin{align}
& \Rightarrow 6{{x}^{2}}-15x-8x+20=0 \\
& \Rightarrow 3x\left( 2x-5 \right)-4\left( 2x-5 \right)=0 \\
& \Rightarrow \left( 3x-4 \right)\left( 2x-5 \right)=0 \\
\end{align}\]
Applying the zero-product property, we get,
\[\Rightarrow \] either \[x=\dfrac{4}{3}\] or \[x=\dfrac{5}{2}\]
Therefore, \[x=\dfrac{4}{3}\] or \[x=\dfrac{5}{2}\] is the solution.
(c) \[0={{x}^{2}}-9\]
\[\begin{align}
& \Rightarrow {{x}^{2}}-9=0 \\
& \Rightarrow {{x}^{2}}-{{3}^{2}}=0 \\
\end{align}\]
Using the algebraic identity: - \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\], we get,
\[\Rightarrow \] either x = -3 or x = 3
Therefore, x = -3 or x = 3 is the solution.
(d) \[0={{x}^{2}}+12x+36\]
\[\Rightarrow {{x}^{2}}+12x+36=0\]
This can be written as: -
\[\Rightarrow {{x}^{2}}+2\times 6\times x+{{6}^{2}}=0\]
Using the algebraic identity: - \[{{a}^{2}}+2ab+{{b}^{2}}={{\left( a+b \right)}^{2}}\], we get,
\[\begin{align}
& \Rightarrow {{\left( x+6 \right)}^{2}}=0 \\
& \Rightarrow \left( x+6 \right)\left( x+6 \right)=0 \\
\end{align}\]
Applying the zero-product property, we get,
\[\begin{align}
& \Rightarrow x+6=0 \\
& \Rightarrow x=-6 \\
\end{align}\]
Therefore, $x = -6$ is the solution.
Note: One must not apply the discriminant formula to solve the above questions because if you will do so then according to the question it will be considered as a wrong approach. This is because we have to factorize the equations and then use the zero-product property but the discriminant formula will directly give the values of x without factoring. You must remember the zero-product property, middle term split method and all the algebraic identities.
Recently Updated Pages
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Class 11 Question and Answer - Your Ultimate Solutions Guide
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE