
f (x) is a polynomial of the third degree which has a local maximum at x=−1. If f (1) =−1, f (2) = 18 and f ′(x) has a local minimum at x=0 then
A) f (0) = 5
B) f(x) has local minimum at x =1
C) f(x) is increasing in \[\left[ 1,2\sqrt{5} \right]\]
D) the distance between (-1, 2) and (a, f(a)), where a is point of local minimum is $2\sqrt{5}$
Answer
513k+ views
Hint: For solving this problem, first we assume a cubic polynomial and try to obtain the actual polynomial from the given conditions. By using the condition of maxima and minima we easily obtain the value of all the variables. After obtaining the final expression, we can check for all the correct options.
Complete step-by-step answer:
Let the cubic polynomial be $f\left( x \right)=a{{x}^{3}}+b{{x}^{2}}+cx+d$.
Whenever it is given that a function has a local maximum or minimum, at that particular value of x the derivative of that function is zero. We are given the local maximum at x = -1. Also, the derivative of f(x) has a local minimum at x = 0. We form two equations using this information as:
\[\begin{align}
& {f}'{{\left( x \right)}_{x=-1}}=0 \\
& \Rightarrow 3a{{x}^{2}}+2bx+c=0 \\
& \Rightarrow 3a{{\left( -1 \right)}^{2}}+2b\left( -1 \right)+c=0 \\
& \Rightarrow 3a-2b+c=0\ldots \left( 1 \right) \\
& \text{Also, }{f}''{{\left( x \right)}_{x=0}}=0 \\
& \Rightarrow 6ax+2b=0 \\
& \Rightarrow 6a\left( 0 \right)+2b=0 \\
& \Rightarrow b=0 \\
\end{align}\]
Also, the value of f (1) = -1 and f (2) = 18. So, another set of equations are:
$\begin{align}
& f\left( 1 \right)=-1 \\
& \Rightarrow a{{\left( 1 \right)}^{3}}+b{{\left( 1 \right)}^{2}}+c\left( 1 \right)+d=-1 \\
& \Rightarrow a+b+c+d=-1 \\
& \text{As, b=0} \\
& \Rightarrow a+c+d=-1\ldots \left( 2 \right) \\
\end{align}$
As, from equation (1), 3a -2(0) + c = 0, so c = -3a. Now, substituting in equation (2), we get
$\begin{align}
& \Rightarrow a-3a+d=-1 \\
& \Rightarrow d-2a=-1\ldots \left( 3 \right) \\
\end{align}$
Again, f (2) = 18. Proceeding again, we get
$\begin{align}
& f\left( 2 \right)=18 \\
& \Rightarrow a{{\left( 2 \right)}^{3}}+b{{\left( 2 \right)}^{2}}+c\left( 2 \right)+d=18 \\
& \Rightarrow 8a+4b+2c+d=18 \\
& \text{As }b=0,\text{ }c=-3a\text{ and }d=2a-1 \\
& \Rightarrow 8a+2\left( -3a \right)+2a-1=18 \\
& \Rightarrow 8a-6a+2a-1=18 \\
& \Rightarrow 4a-1=18 \\
& \Rightarrow 4a=19 \\
& \Rightarrow a=\dfrac{19}{4} \\
& \Rightarrow d=2\left( \dfrac{19}{4} \right)-1 \\
& \Rightarrow d=\dfrac{38-4}{4}=\dfrac{34}{4} \\
& \Rightarrow c=\dfrac{-3\times 19}{4}=\dfrac{-57}{4} \\
\end{align}$
Now, the obtained function is $f\left( x \right)=\dfrac{1}{4}\left( 19{{x}^{3}}-57x+34 \right)$.
Now, obtaining f (0), we get
$\begin{align}
& f\left( 0 \right)=\dfrac{1}{4}\left( 19\times 0-57\times 0+34 \right) \\
& \therefore f\left( 0 \right)=\dfrac{34}{4}\ne 5 \\
\end{align}$
Therefore, option (a) is incorrect.
Now, differentiating with respect to x, we get
$\begin{align}
& {f}'\left( x \right)=\dfrac{1}{4}\left( 57{{x}^{2}}-57 \right) \\
& {f}'\left( x \right)=0 \\
& \Rightarrow 57{{x}^{2}}-57=0 \\
& \Rightarrow {{x}^{2}}-1=0 \\
& \Rightarrow \left( x-1 \right)\left( x+1 \right)=0 \\
& \Rightarrow x=1,-1 \\
& {f}''\left( x \right)=\dfrac{1}{4}\left( 114x \right) \\
& {f}''\left( x \right)>0\text{ at }x=1 \\
\end{align}$
Therefore, at x = 1, we have a local minimum. Therefore, option (b) is correct.
Now, for checking the function as increasing f’(x) > 0.
$\begin{align}
& \text{As, }\left( x+1 \right)\left( x-1 \right)>0 \\
& x\in \left( -\infty ,-1 \right]\cup \left[ 1,\infty \right) \\
\end{align}$
Therefore, option (c) is correct.
Now, for at x = 1, we have local minimum and the value of function at x = 1 is:
$\begin{align}
& f\left( 1 \right)=\dfrac{1}{4}\left[ 19{{\left( 1 \right)}^{3}}-57\left( 1 \right)+34 \right] \\
& f\left( 1 \right)=\dfrac{1}{4}\left( 19-57+34 \right) \\
& f\left( 1 \right)=\dfrac{-4}{4}=-1 \\
\end{align}$
The distance between (-1, 2) and (1, -1) can be given by formula:
$\begin{align}
& d=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}} \\
& d=\sqrt{{{\left( 1-\left( -1 \right) \right)}^{2}}+{{\left( -1-2 \right)}^{2}}} \\
& d=\sqrt{{{\left( 2 \right)}^{2}}+{{\left( -3 \right)}^{2}}} \\
& d=\sqrt{4+9} \\
& d=\sqrt{13} \\
\end{align}$
Therefore, $\sqrt{13}\ne 2\sqrt{5}$ option (d) is incorrect.
Hence, option (b) and (c) is correct.
Note: The key step in solving this problem is the formation of cubic polynomials by using the given information. After obtaining the function, the double derivative should be calculated carefully because the sign of double derivative gives the indication of existence of minima and maxima at critical points where the first derivative is zero. The correctness of obtained function can be easily checked by using the problem statement conditions.
Complete step-by-step answer:
Let the cubic polynomial be $f\left( x \right)=a{{x}^{3}}+b{{x}^{2}}+cx+d$.
Whenever it is given that a function has a local maximum or minimum, at that particular value of x the derivative of that function is zero. We are given the local maximum at x = -1. Also, the derivative of f(x) has a local minimum at x = 0. We form two equations using this information as:
\[\begin{align}
& {f}'{{\left( x \right)}_{x=-1}}=0 \\
& \Rightarrow 3a{{x}^{2}}+2bx+c=0 \\
& \Rightarrow 3a{{\left( -1 \right)}^{2}}+2b\left( -1 \right)+c=0 \\
& \Rightarrow 3a-2b+c=0\ldots \left( 1 \right) \\
& \text{Also, }{f}''{{\left( x \right)}_{x=0}}=0 \\
& \Rightarrow 6ax+2b=0 \\
& \Rightarrow 6a\left( 0 \right)+2b=0 \\
& \Rightarrow b=0 \\
\end{align}\]
Also, the value of f (1) = -1 and f (2) = 18. So, another set of equations are:
$\begin{align}
& f\left( 1 \right)=-1 \\
& \Rightarrow a{{\left( 1 \right)}^{3}}+b{{\left( 1 \right)}^{2}}+c\left( 1 \right)+d=-1 \\
& \Rightarrow a+b+c+d=-1 \\
& \text{As, b=0} \\
& \Rightarrow a+c+d=-1\ldots \left( 2 \right) \\
\end{align}$
As, from equation (1), 3a -2(0) + c = 0, so c = -3a. Now, substituting in equation (2), we get
$\begin{align}
& \Rightarrow a-3a+d=-1 \\
& \Rightarrow d-2a=-1\ldots \left( 3 \right) \\
\end{align}$
Again, f (2) = 18. Proceeding again, we get
$\begin{align}
& f\left( 2 \right)=18 \\
& \Rightarrow a{{\left( 2 \right)}^{3}}+b{{\left( 2 \right)}^{2}}+c\left( 2 \right)+d=18 \\
& \Rightarrow 8a+4b+2c+d=18 \\
& \text{As }b=0,\text{ }c=-3a\text{ and }d=2a-1 \\
& \Rightarrow 8a+2\left( -3a \right)+2a-1=18 \\
& \Rightarrow 8a-6a+2a-1=18 \\
& \Rightarrow 4a-1=18 \\
& \Rightarrow 4a=19 \\
& \Rightarrow a=\dfrac{19}{4} \\
& \Rightarrow d=2\left( \dfrac{19}{4} \right)-1 \\
& \Rightarrow d=\dfrac{38-4}{4}=\dfrac{34}{4} \\
& \Rightarrow c=\dfrac{-3\times 19}{4}=\dfrac{-57}{4} \\
\end{align}$
Now, the obtained function is $f\left( x \right)=\dfrac{1}{4}\left( 19{{x}^{3}}-57x+34 \right)$.
Now, obtaining f (0), we get
$\begin{align}
& f\left( 0 \right)=\dfrac{1}{4}\left( 19\times 0-57\times 0+34 \right) \\
& \therefore f\left( 0 \right)=\dfrac{34}{4}\ne 5 \\
\end{align}$
Therefore, option (a) is incorrect.
Now, differentiating with respect to x, we get
$\begin{align}
& {f}'\left( x \right)=\dfrac{1}{4}\left( 57{{x}^{2}}-57 \right) \\
& {f}'\left( x \right)=0 \\
& \Rightarrow 57{{x}^{2}}-57=0 \\
& \Rightarrow {{x}^{2}}-1=0 \\
& \Rightarrow \left( x-1 \right)\left( x+1 \right)=0 \\
& \Rightarrow x=1,-1 \\
& {f}''\left( x \right)=\dfrac{1}{4}\left( 114x \right) \\
& {f}''\left( x \right)>0\text{ at }x=1 \\
\end{align}$
Therefore, at x = 1, we have a local minimum. Therefore, option (b) is correct.
Now, for checking the function as increasing f’(x) > 0.
$\begin{align}
& \text{As, }\left( x+1 \right)\left( x-1 \right)>0 \\
& x\in \left( -\infty ,-1 \right]\cup \left[ 1,\infty \right) \\
\end{align}$
Therefore, option (c) is correct.
Now, for at x = 1, we have local minimum and the value of function at x = 1 is:
$\begin{align}
& f\left( 1 \right)=\dfrac{1}{4}\left[ 19{{\left( 1 \right)}^{3}}-57\left( 1 \right)+34 \right] \\
& f\left( 1 \right)=\dfrac{1}{4}\left( 19-57+34 \right) \\
& f\left( 1 \right)=\dfrac{-4}{4}=-1 \\
\end{align}$
The distance between (-1, 2) and (1, -1) can be given by formula:
$\begin{align}
& d=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}} \\
& d=\sqrt{{{\left( 1-\left( -1 \right) \right)}^{2}}+{{\left( -1-2 \right)}^{2}}} \\
& d=\sqrt{{{\left( 2 \right)}^{2}}+{{\left( -3 \right)}^{2}}} \\
& d=\sqrt{4+9} \\
& d=\sqrt{13} \\
\end{align}$
Therefore, $\sqrt{13}\ne 2\sqrt{5}$ option (d) is incorrect.
Hence, option (b) and (c) is correct.
Note: The key step in solving this problem is the formation of cubic polynomials by using the given information. After obtaining the function, the double derivative should be calculated carefully because the sign of double derivative gives the indication of existence of minima and maxima at critical points where the first derivative is zero. The correctness of obtained function can be easily checked by using the problem statement conditions.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

Most of the Sinhalaspeaking people in Sri Lanka are class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Write a short note on Franklands reaction class 12 chemistry CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE
