Answer
Verified
501.3k+ views
\[
{\text{Let }}\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|{\text{ be a general determinant }} \\
{\text{As we know that }}\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|{\text{ is expanded as,}} \\
\Rightarrow \left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|{\text{ }} = a\left| {\begin{array}{*{20}{c}}
e&f \\
h&i
\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}
d&f \\
g&i
\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}
d&e \\
g&h
\end{array}} \right|{\text{ }} \\
{\text{This can be reduced as,}} \\
\Rightarrow a\left| {\begin{array}{*{20}{c}}
e&f \\
h&i
\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}
d&f \\
g&i
\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}
d&e \\
g&h
\end{array}} \right|{\text{ = }}a\left( {ei - hf} \right) - b\left( {di - gf} \right) + c\left( {dh - ge} \right){\text{ }} \\
\Rightarrow {\text{So, }}\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|{\text{ }} = {\text{ }}a\left( {ei - hf} \right) - b\left( {di - gf} \right) + c\left( {dh - ge} \right){\text{ (1)}} \\
{\text{Now we know we have to expand }}\left| {\begin{array}{*{20}{c}}
1&{ - 3}&4 \\
3&5&{ - 3} \\
2&{ - 5}&0
\end{array}} \right|{\text{ }} \\
{\text{So, to expand }}\left| {\begin{array}{*{20}{c}}
1&{ - 3}&4 \\
3&5&{ - 3} \\
2&{ - 5}&0
\end{array}} \right|{\text{ first we have to compare its elements with the elements of }}\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|{\text{ }}. \\
{\text{So on comparing we get }}a = 1,b = - 3,c = 4,d = 3,e = 5,f = - 3,g = 2,h = - 5{\text{ and }}i = 0 \\
{\text{Now putting values of }}a,b,c,d,e,f,g,h{\text{ and }}i{\text{ in equation 3 we get,}} \\
\Rightarrow \left| {\begin{array}{*{20}{c}}
1&{ - 3}&4 \\
3&5&{ - 3} \\
2&{ - 5}&0
\end{array}} \right|{\text{ }} = {\text{ }}1\left( {5*0 - ( - 5)*( - 3)} \right) + 3\left( {3*0 - 2*( - 3)} \right) + 4\left( {3*( - 5) - 2*5} \right) \\
\Rightarrow {\text{So, }}\left| {\begin{array}{*{20}{c}}
1&{ - 3}&4 \\
3&5&{ - 3} \\
2&{ - 5}&0
\end{array}} \right|{\text{ = }} - 15 + 18 - 100 = - 97 \\
{\text{Hence }}\left| {\begin{array}{*{20}{c}}
1&{ - 3}&4 \\
3&5&{ - 3} \\
2&{ - 5}&0
\end{array}} \right|{\text{ }} = - 97{\text{ }} \\
{\text{NOTE: - Whenever you came up to expand a determinant then better way is to expand using cofactors}}{\text{.}} \\
{\text{While expanding calculations should be carefully done}}{\text{.}} \\
\]
{\text{Let }}\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|{\text{ be a general determinant }} \\
{\text{As we know that }}\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|{\text{ is expanded as,}} \\
\Rightarrow \left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|{\text{ }} = a\left| {\begin{array}{*{20}{c}}
e&f \\
h&i
\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}
d&f \\
g&i
\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}
d&e \\
g&h
\end{array}} \right|{\text{ }} \\
{\text{This can be reduced as,}} \\
\Rightarrow a\left| {\begin{array}{*{20}{c}}
e&f \\
h&i
\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}
d&f \\
g&i
\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}
d&e \\
g&h
\end{array}} \right|{\text{ = }}a\left( {ei - hf} \right) - b\left( {di - gf} \right) + c\left( {dh - ge} \right){\text{ }} \\
\Rightarrow {\text{So, }}\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|{\text{ }} = {\text{ }}a\left( {ei - hf} \right) - b\left( {di - gf} \right) + c\left( {dh - ge} \right){\text{ (1)}} \\
{\text{Now we know we have to expand }}\left| {\begin{array}{*{20}{c}}
1&{ - 3}&4 \\
3&5&{ - 3} \\
2&{ - 5}&0
\end{array}} \right|{\text{ }} \\
{\text{So, to expand }}\left| {\begin{array}{*{20}{c}}
1&{ - 3}&4 \\
3&5&{ - 3} \\
2&{ - 5}&0
\end{array}} \right|{\text{ first we have to compare its elements with the elements of }}\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|{\text{ }}. \\
{\text{So on comparing we get }}a = 1,b = - 3,c = 4,d = 3,e = 5,f = - 3,g = 2,h = - 5{\text{ and }}i = 0 \\
{\text{Now putting values of }}a,b,c,d,e,f,g,h{\text{ and }}i{\text{ in equation 3 we get,}} \\
\Rightarrow \left| {\begin{array}{*{20}{c}}
1&{ - 3}&4 \\
3&5&{ - 3} \\
2&{ - 5}&0
\end{array}} \right|{\text{ }} = {\text{ }}1\left( {5*0 - ( - 5)*( - 3)} \right) + 3\left( {3*0 - 2*( - 3)} \right) + 4\left( {3*( - 5) - 2*5} \right) \\
\Rightarrow {\text{So, }}\left| {\begin{array}{*{20}{c}}
1&{ - 3}&4 \\
3&5&{ - 3} \\
2&{ - 5}&0
\end{array}} \right|{\text{ = }} - 15 + 18 - 100 = - 97 \\
{\text{Hence }}\left| {\begin{array}{*{20}{c}}
1&{ - 3}&4 \\
3&5&{ - 3} \\
2&{ - 5}&0
\end{array}} \right|{\text{ }} = - 97{\text{ }} \\
{\text{NOTE: - Whenever you came up to expand a determinant then better way is to expand using cofactors}}{\text{.}} \\
{\text{While expanding calculations should be carefully done}}{\text{.}} \\
\]
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it