
Expand each of the following, using suitable identities:
$(i) {\left( {x + 2y + 4z} \right)^2}$ $(ii) {\left( {2x - y + z} \right)^2}$ $(iii) {\left( { - 2x + 3y + 2z} \right)^2}$ $(iv) {\left( {3a - 7b - c} \right)^2}$ $(v) {\left( { - 2x + 5y - 3z} \right)^2}$ $(iv) {\left( {\dfrac{1}{4}a - \dfrac{1}{2}b + 1} \right)^2}$
Answer
604.5k+ views
Hint: Let’s substitute the values of a, b and c in the formula given below for determining the square of sum of three numbers and reach the answer by simplifying.
$ \Rightarrow {\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ac} \right)$
Complete step-by-step answer:
All the above parts of the question contain the form of ${\left( {a + b + c} \right)^2}$ , and as we know that:
${\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ac} \right),$ we will use this formula for expanding every expression:
$(i)$ If we compare ${\left( {x + 2y + 4z} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, we will get $a = x,b = 2y$ and $c = 4z$. Thus, using the formula, we’ll get:
$
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = {x^2} + {\left( {2y} \right)^2} + {\left( {4z} \right)^2} + 2\left( {x.2y + 2y.4z + x.4z} \right), \\
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = {x^2} + 4{y^2} + 16{z^2} + 4xy + 16yz + 8xz \\
$
$(ii)$ If we compare ${\left( {2x - y + z} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, we will get $a = 2x,b = - y$ and $c = z$. Thus, using the formula, we’ll get:
$
\Rightarrow {\left( {2x - y + z} \right)^2} = {\left( {2x} \right)^2} + {\left( { - y} \right)^2} + {z^2} + 2\left[ {2x.\left( { - y} \right) + \left( { - y} \right).z + 2x.z} \right], \\
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = 4{x^2} + {y^2} + {z^2} - 4xy - 2yz + 4xz \\
$
$(iii)$ If we compare ${\left( { - 2x + 3y + 2z} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, we will get $a = - 2x,b = 3y$ and $c = 2z$. Thus, using the formula, we’ll get:
$
\Rightarrow {\left( { - 2x + 3y + 2z} \right)^2} = {\left( { - 2x} \right)^2} + {\left( {3y} \right)^2} + {\left( {2z} \right)^2} + 2\left[ {\left( { - 2x} \right).3y + 3y.2z + \left( { - 2x} \right).2z} \right], \\
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = 4{x^2} + 9{y^2} + 4{z^2} - 12xy + 12yz - 8xz \\
$
$(iv)$ If we compare ${\left( {3a - 7b - c} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, in place of a, b and c here we have 3a, -7b and –c respectively. Thus, using the formula, we’ll get:
\[ \Rightarrow {\left( {3a - 7b - c} \right)^2} = {\left( {3a} \right)^2} + {\left( { - 7b} \right)^2} + {\left( { - c} \right)^2} + 2\left[ {3a.\left( { - 7b} \right) + \left( { - 7b} \right).\left( { - c} \right) + 3a.\left( { - c} \right)} \right],\]
\[ \Rightarrow {\left( {3a - 7b - c} \right)^2} = 9{a^2} + 49{b^2} + {c^2} - 42ab + 14bc - 6ac\]
$(v)$ If we compare ${\left( { - 2x + 5y - 3z} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, we will get $a = - 2x,b = 5y$ and $c = - 3z$. Thus, using the formula, we’ll get:
\[
\Rightarrow {\left( { - 2x + 5y - 3z} \right)^2} = {\left( { - 2x} \right)^2} + {\left( {5y} \right)^2} + {\left( { - 3z} \right)^2} + 2\left[ {\left( { - 2x} \right).5y + 5y.\left( { - 3z} \right) + \left( { - 2x} \right).\left( { - 3z} \right)} \right], \\
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = 4{x^2} + 25{y^2} + 9{z^2} - 20xy - 30yz + 12xz \\
\]
$(vi)$ If we compare ${\left( {\dfrac{1}{4}a - \dfrac{1}{2}b + 1} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, in place of a, b and c here we have $\dfrac{1}{4}a, - \dfrac{1}{2}b$ and 1 respectively. Thus, using the formula, we’ll get:
\[
\Rightarrow {\left( {\dfrac{1}{4}a - \dfrac{1}{2}b + 1} \right)^2} = {\left( {\dfrac{1}{4}a} \right)^2} + {\left( { - \dfrac{1}{2}b} \right)^2} + {1^2} + 2\left[ {\left( {\dfrac{1}{4}a} \right).\left( { - \dfrac{1}{2}b} \right) + \left( { - \dfrac{1}{2}b} \right).\left( 1 \right) + \left( {\dfrac{1}{4}a} \right).\left( 1 \right)} \right], \\
\Rightarrow {\left( {\dfrac{1}{4}a - \dfrac{1}{2}b + 1} \right)^2} = \dfrac{1}{{16}}{a^2} + \dfrac{1}{4}{b^2} + 1 - \dfrac{1}{4}ab - b + \dfrac{1}{2}a. \\
\]
Note: If we miss the formula for ${\left( {a + b + c} \right)^2}$, we can apply general multiplication method for expanding the above expressions:
$
\Rightarrow {\left( {a + b + c} \right)^2} = \left( {a + b + c} \right).\left( {a + b + c} \right), \\
\Rightarrow {\left( {a + b + c} \right)^2} = a\left( {a + b + c} \right) + b\left( {a + b + c} \right) + c\left( {a + b + c} \right) \\
$
On expansion, we’ll get the same result.
$ \Rightarrow {\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ac} \right)$
Complete step-by-step answer:
All the above parts of the question contain the form of ${\left( {a + b + c} \right)^2}$ , and as we know that:
${\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ac} \right),$ we will use this formula for expanding every expression:
$(i)$ If we compare ${\left( {x + 2y + 4z} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, we will get $a = x,b = 2y$ and $c = 4z$. Thus, using the formula, we’ll get:
$
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = {x^2} + {\left( {2y} \right)^2} + {\left( {4z} \right)^2} + 2\left( {x.2y + 2y.4z + x.4z} \right), \\
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = {x^2} + 4{y^2} + 16{z^2} + 4xy + 16yz + 8xz \\
$
$(ii)$ If we compare ${\left( {2x - y + z} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, we will get $a = 2x,b = - y$ and $c = z$. Thus, using the formula, we’ll get:
$
\Rightarrow {\left( {2x - y + z} \right)^2} = {\left( {2x} \right)^2} + {\left( { - y} \right)^2} + {z^2} + 2\left[ {2x.\left( { - y} \right) + \left( { - y} \right).z + 2x.z} \right], \\
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = 4{x^2} + {y^2} + {z^2} - 4xy - 2yz + 4xz \\
$
$(iii)$ If we compare ${\left( { - 2x + 3y + 2z} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, we will get $a = - 2x,b = 3y$ and $c = 2z$. Thus, using the formula, we’ll get:
$
\Rightarrow {\left( { - 2x + 3y + 2z} \right)^2} = {\left( { - 2x} \right)^2} + {\left( {3y} \right)^2} + {\left( {2z} \right)^2} + 2\left[ {\left( { - 2x} \right).3y + 3y.2z + \left( { - 2x} \right).2z} \right], \\
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = 4{x^2} + 9{y^2} + 4{z^2} - 12xy + 12yz - 8xz \\
$
$(iv)$ If we compare ${\left( {3a - 7b - c} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, in place of a, b and c here we have 3a, -7b and –c respectively. Thus, using the formula, we’ll get:
\[ \Rightarrow {\left( {3a - 7b - c} \right)^2} = {\left( {3a} \right)^2} + {\left( { - 7b} \right)^2} + {\left( { - c} \right)^2} + 2\left[ {3a.\left( { - 7b} \right) + \left( { - 7b} \right).\left( { - c} \right) + 3a.\left( { - c} \right)} \right],\]
\[ \Rightarrow {\left( {3a - 7b - c} \right)^2} = 9{a^2} + 49{b^2} + {c^2} - 42ab + 14bc - 6ac\]
$(v)$ If we compare ${\left( { - 2x + 5y - 3z} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, we will get $a = - 2x,b = 5y$ and $c = - 3z$. Thus, using the formula, we’ll get:
\[
\Rightarrow {\left( { - 2x + 5y - 3z} \right)^2} = {\left( { - 2x} \right)^2} + {\left( {5y} \right)^2} + {\left( { - 3z} \right)^2} + 2\left[ {\left( { - 2x} \right).5y + 5y.\left( { - 3z} \right) + \left( { - 2x} \right).\left( { - 3z} \right)} \right], \\
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = 4{x^2} + 25{y^2} + 9{z^2} - 20xy - 30yz + 12xz \\
\]
$(vi)$ If we compare ${\left( {\dfrac{1}{4}a - \dfrac{1}{2}b + 1} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, in place of a, b and c here we have $\dfrac{1}{4}a, - \dfrac{1}{2}b$ and 1 respectively. Thus, using the formula, we’ll get:
\[
\Rightarrow {\left( {\dfrac{1}{4}a - \dfrac{1}{2}b + 1} \right)^2} = {\left( {\dfrac{1}{4}a} \right)^2} + {\left( { - \dfrac{1}{2}b} \right)^2} + {1^2} + 2\left[ {\left( {\dfrac{1}{4}a} \right).\left( { - \dfrac{1}{2}b} \right) + \left( { - \dfrac{1}{2}b} \right).\left( 1 \right) + \left( {\dfrac{1}{4}a} \right).\left( 1 \right)} \right], \\
\Rightarrow {\left( {\dfrac{1}{4}a - \dfrac{1}{2}b + 1} \right)^2} = \dfrac{1}{{16}}{a^2} + \dfrac{1}{4}{b^2} + 1 - \dfrac{1}{4}ab - b + \dfrac{1}{2}a. \\
\]
Note: If we miss the formula for ${\left( {a + b + c} \right)^2}$, we can apply general multiplication method for expanding the above expressions:
$
\Rightarrow {\left( {a + b + c} \right)^2} = \left( {a + b + c} \right).\left( {a + b + c} \right), \\
\Rightarrow {\left( {a + b + c} \right)^2} = a\left( {a + b + c} \right) + b\left( {a + b + c} \right) + c\left( {a + b + c} \right) \\
$
On expansion, we’ll get the same result.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the full form of pH?

