Answer
Verified
476.4k+ views
Hint: Let’s substitute the values of a, b and c in the formula given below for determining the square of sum of three numbers and reach the answer by simplifying.
$ \Rightarrow {\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ac} \right)$
Complete step-by-step answer:
All the above parts of the question contain the form of ${\left( {a + b + c} \right)^2}$ , and as we know that:
${\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ac} \right),$ we will use this formula for expanding every expression:
$(i)$ If we compare ${\left( {x + 2y + 4z} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, we will get $a = x,b = 2y$ and $c = 4z$. Thus, using the formula, we’ll get:
$
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = {x^2} + {\left( {2y} \right)^2} + {\left( {4z} \right)^2} + 2\left( {x.2y + 2y.4z + x.4z} \right), \\
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = {x^2} + 4{y^2} + 16{z^2} + 4xy + 16yz + 8xz \\
$
$(ii)$ If we compare ${\left( {2x - y + z} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, we will get $a = 2x,b = - y$ and $c = z$. Thus, using the formula, we’ll get:
$
\Rightarrow {\left( {2x - y + z} \right)^2} = {\left( {2x} \right)^2} + {\left( { - y} \right)^2} + {z^2} + 2\left[ {2x.\left( { - y} \right) + \left( { - y} \right).z + 2x.z} \right], \\
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = 4{x^2} + {y^2} + {z^2} - 4xy - 2yz + 4xz \\
$
$(iii)$ If we compare ${\left( { - 2x + 3y + 2z} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, we will get $a = - 2x,b = 3y$ and $c = 2z$. Thus, using the formula, we’ll get:
$
\Rightarrow {\left( { - 2x + 3y + 2z} \right)^2} = {\left( { - 2x} \right)^2} + {\left( {3y} \right)^2} + {\left( {2z} \right)^2} + 2\left[ {\left( { - 2x} \right).3y + 3y.2z + \left( { - 2x} \right).2z} \right], \\
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = 4{x^2} + 9{y^2} + 4{z^2} - 12xy + 12yz - 8xz \\
$
$(iv)$ If we compare ${\left( {3a - 7b - c} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, in place of a, b and c here we have 3a, -7b and –c respectively. Thus, using the formula, we’ll get:
\[ \Rightarrow {\left( {3a - 7b - c} \right)^2} = {\left( {3a} \right)^2} + {\left( { - 7b} \right)^2} + {\left( { - c} \right)^2} + 2\left[ {3a.\left( { - 7b} \right) + \left( { - 7b} \right).\left( { - c} \right) + 3a.\left( { - c} \right)} \right],\]
\[ \Rightarrow {\left( {3a - 7b - c} \right)^2} = 9{a^2} + 49{b^2} + {c^2} - 42ab + 14bc - 6ac\]
$(v)$ If we compare ${\left( { - 2x + 5y - 3z} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, we will get $a = - 2x,b = 5y$ and $c = - 3z$. Thus, using the formula, we’ll get:
\[
\Rightarrow {\left( { - 2x + 5y - 3z} \right)^2} = {\left( { - 2x} \right)^2} + {\left( {5y} \right)^2} + {\left( { - 3z} \right)^2} + 2\left[ {\left( { - 2x} \right).5y + 5y.\left( { - 3z} \right) + \left( { - 2x} \right).\left( { - 3z} \right)} \right], \\
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = 4{x^2} + 25{y^2} + 9{z^2} - 20xy - 30yz + 12xz \\
\]
$(vi)$ If we compare ${\left( {\dfrac{1}{4}a - \dfrac{1}{2}b + 1} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, in place of a, b and c here we have $\dfrac{1}{4}a, - \dfrac{1}{2}b$ and 1 respectively. Thus, using the formula, we’ll get:
\[
\Rightarrow {\left( {\dfrac{1}{4}a - \dfrac{1}{2}b + 1} \right)^2} = {\left( {\dfrac{1}{4}a} \right)^2} + {\left( { - \dfrac{1}{2}b} \right)^2} + {1^2} + 2\left[ {\left( {\dfrac{1}{4}a} \right).\left( { - \dfrac{1}{2}b} \right) + \left( { - \dfrac{1}{2}b} \right).\left( 1 \right) + \left( {\dfrac{1}{4}a} \right).\left( 1 \right)} \right], \\
\Rightarrow {\left( {\dfrac{1}{4}a - \dfrac{1}{2}b + 1} \right)^2} = \dfrac{1}{{16}}{a^2} + \dfrac{1}{4}{b^2} + 1 - \dfrac{1}{4}ab - b + \dfrac{1}{2}a. \\
\]
Note: If we miss the formula for ${\left( {a + b + c} \right)^2}$, we can apply general multiplication method for expanding the above expressions:
$
\Rightarrow {\left( {a + b + c} \right)^2} = \left( {a + b + c} \right).\left( {a + b + c} \right), \\
\Rightarrow {\left( {a + b + c} \right)^2} = a\left( {a + b + c} \right) + b\left( {a + b + c} \right) + c\left( {a + b + c} \right) \\
$
On expansion, we’ll get the same result.
$ \Rightarrow {\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ac} \right)$
Complete step-by-step answer:
All the above parts of the question contain the form of ${\left( {a + b + c} \right)^2}$ , and as we know that:
${\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ac} \right),$ we will use this formula for expanding every expression:
$(i)$ If we compare ${\left( {x + 2y + 4z} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, we will get $a = x,b = 2y$ and $c = 4z$. Thus, using the formula, we’ll get:
$
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = {x^2} + {\left( {2y} \right)^2} + {\left( {4z} \right)^2} + 2\left( {x.2y + 2y.4z + x.4z} \right), \\
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = {x^2} + 4{y^2} + 16{z^2} + 4xy + 16yz + 8xz \\
$
$(ii)$ If we compare ${\left( {2x - y + z} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, we will get $a = 2x,b = - y$ and $c = z$. Thus, using the formula, we’ll get:
$
\Rightarrow {\left( {2x - y + z} \right)^2} = {\left( {2x} \right)^2} + {\left( { - y} \right)^2} + {z^2} + 2\left[ {2x.\left( { - y} \right) + \left( { - y} \right).z + 2x.z} \right], \\
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = 4{x^2} + {y^2} + {z^2} - 4xy - 2yz + 4xz \\
$
$(iii)$ If we compare ${\left( { - 2x + 3y + 2z} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, we will get $a = - 2x,b = 3y$ and $c = 2z$. Thus, using the formula, we’ll get:
$
\Rightarrow {\left( { - 2x + 3y + 2z} \right)^2} = {\left( { - 2x} \right)^2} + {\left( {3y} \right)^2} + {\left( {2z} \right)^2} + 2\left[ {\left( { - 2x} \right).3y + 3y.2z + \left( { - 2x} \right).2z} \right], \\
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = 4{x^2} + 9{y^2} + 4{z^2} - 12xy + 12yz - 8xz \\
$
$(iv)$ If we compare ${\left( {3a - 7b - c} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, in place of a, b and c here we have 3a, -7b and –c respectively. Thus, using the formula, we’ll get:
\[ \Rightarrow {\left( {3a - 7b - c} \right)^2} = {\left( {3a} \right)^2} + {\left( { - 7b} \right)^2} + {\left( { - c} \right)^2} + 2\left[ {3a.\left( { - 7b} \right) + \left( { - 7b} \right).\left( { - c} \right) + 3a.\left( { - c} \right)} \right],\]
\[ \Rightarrow {\left( {3a - 7b - c} \right)^2} = 9{a^2} + 49{b^2} + {c^2} - 42ab + 14bc - 6ac\]
$(v)$ If we compare ${\left( { - 2x + 5y - 3z} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, we will get $a = - 2x,b = 5y$ and $c = - 3z$. Thus, using the formula, we’ll get:
\[
\Rightarrow {\left( { - 2x + 5y - 3z} \right)^2} = {\left( { - 2x} \right)^2} + {\left( {5y} \right)^2} + {\left( { - 3z} \right)^2} + 2\left[ {\left( { - 2x} \right).5y + 5y.\left( { - 3z} \right) + \left( { - 2x} \right).\left( { - 3z} \right)} \right], \\
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = 4{x^2} + 25{y^2} + 9{z^2} - 20xy - 30yz + 12xz \\
\]
$(vi)$ If we compare ${\left( {\dfrac{1}{4}a - \dfrac{1}{2}b + 1} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, in place of a, b and c here we have $\dfrac{1}{4}a, - \dfrac{1}{2}b$ and 1 respectively. Thus, using the formula, we’ll get:
\[
\Rightarrow {\left( {\dfrac{1}{4}a - \dfrac{1}{2}b + 1} \right)^2} = {\left( {\dfrac{1}{4}a} \right)^2} + {\left( { - \dfrac{1}{2}b} \right)^2} + {1^2} + 2\left[ {\left( {\dfrac{1}{4}a} \right).\left( { - \dfrac{1}{2}b} \right) + \left( { - \dfrac{1}{2}b} \right).\left( 1 \right) + \left( {\dfrac{1}{4}a} \right).\left( 1 \right)} \right], \\
\Rightarrow {\left( {\dfrac{1}{4}a - \dfrac{1}{2}b + 1} \right)^2} = \dfrac{1}{{16}}{a^2} + \dfrac{1}{4}{b^2} + 1 - \dfrac{1}{4}ab - b + \dfrac{1}{2}a. \\
\]
Note: If we miss the formula for ${\left( {a + b + c} \right)^2}$, we can apply general multiplication method for expanding the above expressions:
$
\Rightarrow {\left( {a + b + c} \right)^2} = \left( {a + b + c} \right).\left( {a + b + c} \right), \\
\Rightarrow {\left( {a + b + c} \right)^2} = a\left( {a + b + c} \right) + b\left( {a + b + c} \right) + c\left( {a + b + c} \right) \\
$
On expansion, we’ll get the same result.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths