Expand each of the following, using suitable identities:
$(i) {\left( {x + 2y + 4z} \right)^2}$ $(ii) {\left( {2x - y + z} \right)^2}$ $(iii) {\left( { - 2x + 3y + 2z} \right)^2}$ $(iv) {\left( {3a - 7b - c} \right)^2}$ $(v) {\left( { - 2x + 5y - 3z} \right)^2}$ $(iv) {\left( {\dfrac{1}{4}a - \dfrac{1}{2}b + 1} \right)^2}$
Answer
381.6k+ views
Hint: Let’s substitute the values of a, b and c in the formula given below for determining the square of sum of three numbers and reach the answer by simplifying.
$ \Rightarrow {\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ac} \right)$
Complete step-by-step answer:
All the above parts of the question contain the form of ${\left( {a + b + c} \right)^2}$ , and as we know that:
${\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ac} \right),$ we will use this formula for expanding every expression:
$(i)$ If we compare ${\left( {x + 2y + 4z} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, we will get $a = x,b = 2y$ and $c = 4z$. Thus, using the formula, we’ll get:
$
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = {x^2} + {\left( {2y} \right)^2} + {\left( {4z} \right)^2} + 2\left( {x.2y + 2y.4z + x.4z} \right), \\
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = {x^2} + 4{y^2} + 16{z^2} + 4xy + 16yz + 8xz \\
$
$(ii)$ If we compare ${\left( {2x - y + z} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, we will get $a = 2x,b = - y$ and $c = z$. Thus, using the formula, we’ll get:
$
\Rightarrow {\left( {2x - y + z} \right)^2} = {\left( {2x} \right)^2} + {\left( { - y} \right)^2} + {z^2} + 2\left[ {2x.\left( { - y} \right) + \left( { - y} \right).z + 2x.z} \right], \\
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = 4{x^2} + {y^2} + {z^2} - 4xy - 2yz + 4xz \\
$
$(iii)$ If we compare ${\left( { - 2x + 3y + 2z} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, we will get $a = - 2x,b = 3y$ and $c = 2z$. Thus, using the formula, we’ll get:
$
\Rightarrow {\left( { - 2x + 3y + 2z} \right)^2} = {\left( { - 2x} \right)^2} + {\left( {3y} \right)^2} + {\left( {2z} \right)^2} + 2\left[ {\left( { - 2x} \right).3y + 3y.2z + \left( { - 2x} \right).2z} \right], \\
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = 4{x^2} + 9{y^2} + 4{z^2} - 12xy + 12yz - 8xz \\
$
$(iv)$ If we compare ${\left( {3a - 7b - c} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, in place of a, b and c here we have 3a, -7b and –c respectively. Thus, using the formula, we’ll get:
\[ \Rightarrow {\left( {3a - 7b - c} \right)^2} = {\left( {3a} \right)^2} + {\left( { - 7b} \right)^2} + {\left( { - c} \right)^2} + 2\left[ {3a.\left( { - 7b} \right) + \left( { - 7b} \right).\left( { - c} \right) + 3a.\left( { - c} \right)} \right],\]
\[ \Rightarrow {\left( {3a - 7b - c} \right)^2} = 9{a^2} + 49{b^2} + {c^2} - 42ab + 14bc - 6ac\]
$(v)$ If we compare ${\left( { - 2x + 5y - 3z} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, we will get $a = - 2x,b = 5y$ and $c = - 3z$. Thus, using the formula, we’ll get:
\[
\Rightarrow {\left( { - 2x + 5y - 3z} \right)^2} = {\left( { - 2x} \right)^2} + {\left( {5y} \right)^2} + {\left( { - 3z} \right)^2} + 2\left[ {\left( { - 2x} \right).5y + 5y.\left( { - 3z} \right) + \left( { - 2x} \right).\left( { - 3z} \right)} \right], \\
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = 4{x^2} + 25{y^2} + 9{z^2} - 20xy - 30yz + 12xz \\
\]
$(vi)$ If we compare ${\left( {\dfrac{1}{4}a - \dfrac{1}{2}b + 1} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, in place of a, b and c here we have $\dfrac{1}{4}a, - \dfrac{1}{2}b$ and 1 respectively. Thus, using the formula, we’ll get:
\[
\Rightarrow {\left( {\dfrac{1}{4}a - \dfrac{1}{2}b + 1} \right)^2} = {\left( {\dfrac{1}{4}a} \right)^2} + {\left( { - \dfrac{1}{2}b} \right)^2} + {1^2} + 2\left[ {\left( {\dfrac{1}{4}a} \right).\left( { - \dfrac{1}{2}b} \right) + \left( { - \dfrac{1}{2}b} \right).\left( 1 \right) + \left( {\dfrac{1}{4}a} \right).\left( 1 \right)} \right], \\
\Rightarrow {\left( {\dfrac{1}{4}a - \dfrac{1}{2}b + 1} \right)^2} = \dfrac{1}{{16}}{a^2} + \dfrac{1}{4}{b^2} + 1 - \dfrac{1}{4}ab - b + \dfrac{1}{2}a. \\
\]
Note: If we miss the formula for ${\left( {a + b + c} \right)^2}$, we can apply general multiplication method for expanding the above expressions:
$
\Rightarrow {\left( {a + b + c} \right)^2} = \left( {a + b + c} \right).\left( {a + b + c} \right), \\
\Rightarrow {\left( {a + b + c} \right)^2} = a\left( {a + b + c} \right) + b\left( {a + b + c} \right) + c\left( {a + b + c} \right) \\
$
On expansion, we’ll get the same result.
$ \Rightarrow {\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ac} \right)$
Complete step-by-step answer:
All the above parts of the question contain the form of ${\left( {a + b + c} \right)^2}$ , and as we know that:
${\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ac} \right),$ we will use this formula for expanding every expression:
$(i)$ If we compare ${\left( {x + 2y + 4z} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, we will get $a = x,b = 2y$ and $c = 4z$. Thus, using the formula, we’ll get:
$
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = {x^2} + {\left( {2y} \right)^2} + {\left( {4z} \right)^2} + 2\left( {x.2y + 2y.4z + x.4z} \right), \\
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = {x^2} + 4{y^2} + 16{z^2} + 4xy + 16yz + 8xz \\
$
$(ii)$ If we compare ${\left( {2x - y + z} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, we will get $a = 2x,b = - y$ and $c = z$. Thus, using the formula, we’ll get:
$
\Rightarrow {\left( {2x - y + z} \right)^2} = {\left( {2x} \right)^2} + {\left( { - y} \right)^2} + {z^2} + 2\left[ {2x.\left( { - y} \right) + \left( { - y} \right).z + 2x.z} \right], \\
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = 4{x^2} + {y^2} + {z^2} - 4xy - 2yz + 4xz \\
$
$(iii)$ If we compare ${\left( { - 2x + 3y + 2z} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, we will get $a = - 2x,b = 3y$ and $c = 2z$. Thus, using the formula, we’ll get:
$
\Rightarrow {\left( { - 2x + 3y + 2z} \right)^2} = {\left( { - 2x} \right)^2} + {\left( {3y} \right)^2} + {\left( {2z} \right)^2} + 2\left[ {\left( { - 2x} \right).3y + 3y.2z + \left( { - 2x} \right).2z} \right], \\
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = 4{x^2} + 9{y^2} + 4{z^2} - 12xy + 12yz - 8xz \\
$
$(iv)$ If we compare ${\left( {3a - 7b - c} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, in place of a, b and c here we have 3a, -7b and –c respectively. Thus, using the formula, we’ll get:
\[ \Rightarrow {\left( {3a - 7b - c} \right)^2} = {\left( {3a} \right)^2} + {\left( { - 7b} \right)^2} + {\left( { - c} \right)^2} + 2\left[ {3a.\left( { - 7b} \right) + \left( { - 7b} \right).\left( { - c} \right) + 3a.\left( { - c} \right)} \right],\]
\[ \Rightarrow {\left( {3a - 7b - c} \right)^2} = 9{a^2} + 49{b^2} + {c^2} - 42ab + 14bc - 6ac\]
$(v)$ If we compare ${\left( { - 2x + 5y - 3z} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, we will get $a = - 2x,b = 5y$ and $c = - 3z$. Thus, using the formula, we’ll get:
\[
\Rightarrow {\left( { - 2x + 5y - 3z} \right)^2} = {\left( { - 2x} \right)^2} + {\left( {5y} \right)^2} + {\left( { - 3z} \right)^2} + 2\left[ {\left( { - 2x} \right).5y + 5y.\left( { - 3z} \right) + \left( { - 2x} \right).\left( { - 3z} \right)} \right], \\
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = 4{x^2} + 25{y^2} + 9{z^2} - 20xy - 30yz + 12xz \\
\]
$(vi)$ If we compare ${\left( {\dfrac{1}{4}a - \dfrac{1}{2}b + 1} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, in place of a, b and c here we have $\dfrac{1}{4}a, - \dfrac{1}{2}b$ and 1 respectively. Thus, using the formula, we’ll get:
\[
\Rightarrow {\left( {\dfrac{1}{4}a - \dfrac{1}{2}b + 1} \right)^2} = {\left( {\dfrac{1}{4}a} \right)^2} + {\left( { - \dfrac{1}{2}b} \right)^2} + {1^2} + 2\left[ {\left( {\dfrac{1}{4}a} \right).\left( { - \dfrac{1}{2}b} \right) + \left( { - \dfrac{1}{2}b} \right).\left( 1 \right) + \left( {\dfrac{1}{4}a} \right).\left( 1 \right)} \right], \\
\Rightarrow {\left( {\dfrac{1}{4}a - \dfrac{1}{2}b + 1} \right)^2} = \dfrac{1}{{16}}{a^2} + \dfrac{1}{4}{b^2} + 1 - \dfrac{1}{4}ab - b + \dfrac{1}{2}a. \\
\]
Note: If we miss the formula for ${\left( {a + b + c} \right)^2}$, we can apply general multiplication method for expanding the above expressions:
$
\Rightarrow {\left( {a + b + c} \right)^2} = \left( {a + b + c} \right).\left( {a + b + c} \right), \\
\Rightarrow {\left( {a + b + c} \right)^2} = a\left( {a + b + c} \right) + b\left( {a + b + c} \right) + c\left( {a + b + c} \right) \\
$
On expansion, we’ll get the same result.
Recently Updated Pages
Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Find the values of other five trigonometric ratios class 10 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts
Which country launched the first satellite in space class 11 physics CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE
