Answer
Verified
391.8k+ views
Hint: Use of Binomial theorem to expand the given equation. First take out $ 3 $ common from the equation then expand the values as need using the basic formula of Binomial theorem that is $ {(1 + x)^n} = 1 + nx + \dfrac{{n(n - 1){x^2}}}{{2!}} + \dfrac{{n(n - 1)(n - 2){x^3}}}{{3!}} + .. $ just put the values accordingly and get the results.
Complete step-by-step answer:
We are given the equation $ {\left( {3 - x} \right)^{ - 2}} $ to expand in ascending orders of $ \dfrac{1}{x} $ , with four non-zero terms.
So, we are going to use the binomial theorem and from Binomial theorem we know that: $ {\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n\left( {n - 1} \right){x^2}}}{{2!}} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right){x^3}}}{{3!}} + .. $ (i)
Since we want only four non zero terms so we can stop at fourth term only.
Case $ 1 $ :
Since we need $ \left( {1 + x} \right) $ so take $ 3 $ common from the given equation and we get:
$ {3^{ - 2}}{\left( {1 - \dfrac{x}{3}} \right)^{ - 2}} $ .
On further solving we get:
$ \dfrac{1}{{{3^2}}}{\left( {1 - \dfrac{x}{3}} \right)^{ - 2}} = \dfrac{1}{9}{\left( {1 - \dfrac{x}{3}} \right)^{ - 2}} $
On equating the above term and equation (i) we get:
$ x = \dfrac{{ - x}}{3} $ and $ n = - 2 $
Just put these values in the Expansion formula (i) and we get:
$
{\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n\left( {n - 1} \right){x^2}}}{{2!}} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right){x^3}}}{{3!}} + .. \\
{\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} = 1 + \left( { - 2} \right)\left( {\dfrac{{ - x}}{3}} \right) + \dfrac{{\left( { - 2} \right)\left( { - 2 - 1} \right){{\left( {\dfrac{{ - x}}{3}} \right)}^2}}}{{2!}} + \dfrac{{\left( { - 2} \right)\left( { - 2 - 1} \right)\left( { - 2 - 2} \right){{\left( {\dfrac{{ - x}}{3}} \right)}^3}}}{{3!}} \;
$
Simplifying it, and we get:
$ {\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} = \left( {1 + \dfrac{{2x}}{3} + \dfrac{{{x^2}}}{3} + \dfrac{{4{x^3}}}{{27}}} \right) $
Substituting this value in $ \dfrac{1}{9}{\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} $ :
$ \dfrac{1}{9}{\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} = \dfrac{1}{9}\left( {1 + \dfrac{{2x}}{3} + \dfrac{{{x^2}}}{3} + \dfrac{{4{x^3}}}{{27}}} \right) $
Opening the parenthesis on the right side and we get:
$ \dfrac{1}{9}{\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} = \dfrac{1}{9} + \dfrac{{2x}}{{27}} + \dfrac{{{x^2}}}{{27}} + \dfrac{{4{x^3}}}{{243}} $ .
Since the value of $ x $ is given by $ \dfrac{{ - x}}{3} $ .And \[\left| {\dfrac{{ - x}}{3}} \right| < 1\] So the value of $ x $ for which the expansion is valid is $ \left| x \right| < 3 $ .
Case $ 2 $ :
Next, we repeat the same steps with some changes:
Since we need $ \left( {1 + x} \right) $ so take $ - x $ common now from the given equation and we get:
$ {\left( { - x} \right)^{ - 2}}{\left( {1 - \dfrac{3}{x}} \right)^{ - 2}} $
On further solving we get:
$ \dfrac{1}{{{x^2}}}{\left( {1 - \dfrac{3}{x}} \right)^{ - 2}} = \dfrac{1}{{{x^2}}}{\left( {1 - \dfrac{3}{x}} \right)^{ - 2}} $
On equating the above term and equation (i) we get:
$ x = \dfrac{{ - 3}}{x} $ and $ n = - 2 $
Just put these values in the Expansion formula (i) and we get:
$
{\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n\left( {n - 1} \right){x^2}}}{{2!}} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right){x^3}}}{{3!}} + .. \\
{\left( {1 + \dfrac{{ - 3}}{x}} \right)^{ - 2}} = 1 + \left( { - 2} \right)\left( {\dfrac{{ - 3}}{x}} \right) + \dfrac{{\left( { - 2} \right)\left( { - 2 - 1} \right){{\left( {\dfrac{{ - 3}}{x}} \right)}^2}}}{{2!}} + \dfrac{{\left( { - 2} \right)\left( { - 2 - 1} \right)\left( { - 2 - 2} \right){{\left( {\dfrac{{ - 3}}{x}} \right)}^3}}}{{3!}} \\
$
Simplifying it, and we get:
$ {\left( {1 + \dfrac{{ - 3}}{x}} \right)^{ - 2}} = \left( {1 + \dfrac{6}{x} + \dfrac{{27}}{{{x^2}}} + \dfrac{{108}}{{{x^3}}}} \right) $
Substituting this value in $ \dfrac{1}{{{x^2}}}{\left( {1 - \dfrac{3}{x}} \right)^{ - 2}} $ :
$ \dfrac{1}{{{x^2}}}{\left( {1 + \dfrac{{ - 3}}{x}} \right)^{ - 2}} = \dfrac{1}{{{x^2}}}\left( {1 + \dfrac{6}{x} + \dfrac{{27}}{{{x^2}}} + \dfrac{{108}}{{{x^3}}}} \right) $
Opening the parenthesis on the right, side and we get:
$ \dfrac{1}{{{x^2}}}{\left( {1 + \dfrac{{ - 3}}{x}} \right)^{ - 2}} = \dfrac{1}{{{x^2}}} + \dfrac{6}{{{x^3}}} + \dfrac{{27}}{{{x^4}}} + \dfrac{{108}}{{{x^5}}} $
Since the value of $ x $ is given by \[\dfrac{{ - 3}}{x}\].And $ \left| {\dfrac{{ - 3}}{x}} \right| < 1 $ . So the value of $ x $ for which the expansion is valid is $ \left| x \right| > 3 $ .
Note: There can be an error in putting the values in the formula and get the results.
Don’t forget to multiply the coefficients in the expanded formula.
Always check up to which term values are needed.
Also remember that we are supposed to take minus power out along with common terms.
Complete step-by-step answer:
We are given the equation $ {\left( {3 - x} \right)^{ - 2}} $ to expand in ascending orders of $ \dfrac{1}{x} $ , with four non-zero terms.
So, we are going to use the binomial theorem and from Binomial theorem we know that: $ {\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n\left( {n - 1} \right){x^2}}}{{2!}} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right){x^3}}}{{3!}} + .. $ (i)
Since we want only four non zero terms so we can stop at fourth term only.
Case $ 1 $ :
Since we need $ \left( {1 + x} \right) $ so take $ 3 $ common from the given equation and we get:
$ {3^{ - 2}}{\left( {1 - \dfrac{x}{3}} \right)^{ - 2}} $ .
On further solving we get:
$ \dfrac{1}{{{3^2}}}{\left( {1 - \dfrac{x}{3}} \right)^{ - 2}} = \dfrac{1}{9}{\left( {1 - \dfrac{x}{3}} \right)^{ - 2}} $
On equating the above term and equation (i) we get:
$ x = \dfrac{{ - x}}{3} $ and $ n = - 2 $
Just put these values in the Expansion formula (i) and we get:
$
{\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n\left( {n - 1} \right){x^2}}}{{2!}} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right){x^3}}}{{3!}} + .. \\
{\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} = 1 + \left( { - 2} \right)\left( {\dfrac{{ - x}}{3}} \right) + \dfrac{{\left( { - 2} \right)\left( { - 2 - 1} \right){{\left( {\dfrac{{ - x}}{3}} \right)}^2}}}{{2!}} + \dfrac{{\left( { - 2} \right)\left( { - 2 - 1} \right)\left( { - 2 - 2} \right){{\left( {\dfrac{{ - x}}{3}} \right)}^3}}}{{3!}} \;
$
Simplifying it, and we get:
$ {\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} = \left( {1 + \dfrac{{2x}}{3} + \dfrac{{{x^2}}}{3} + \dfrac{{4{x^3}}}{{27}}} \right) $
Substituting this value in $ \dfrac{1}{9}{\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} $ :
$ \dfrac{1}{9}{\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} = \dfrac{1}{9}\left( {1 + \dfrac{{2x}}{3} + \dfrac{{{x^2}}}{3} + \dfrac{{4{x^3}}}{{27}}} \right) $
Opening the parenthesis on the right side and we get:
$ \dfrac{1}{9}{\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} = \dfrac{1}{9} + \dfrac{{2x}}{{27}} + \dfrac{{{x^2}}}{{27}} + \dfrac{{4{x^3}}}{{243}} $ .
Since the value of $ x $ is given by $ \dfrac{{ - x}}{3} $ .And \[\left| {\dfrac{{ - x}}{3}} \right| < 1\] So the value of $ x $ for which the expansion is valid is $ \left| x \right| < 3 $ .
Case $ 2 $ :
Next, we repeat the same steps with some changes:
Since we need $ \left( {1 + x} \right) $ so take $ - x $ common now from the given equation and we get:
$ {\left( { - x} \right)^{ - 2}}{\left( {1 - \dfrac{3}{x}} \right)^{ - 2}} $
On further solving we get:
$ \dfrac{1}{{{x^2}}}{\left( {1 - \dfrac{3}{x}} \right)^{ - 2}} = \dfrac{1}{{{x^2}}}{\left( {1 - \dfrac{3}{x}} \right)^{ - 2}} $
On equating the above term and equation (i) we get:
$ x = \dfrac{{ - 3}}{x} $ and $ n = - 2 $
Just put these values in the Expansion formula (i) and we get:
$
{\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n\left( {n - 1} \right){x^2}}}{{2!}} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right){x^3}}}{{3!}} + .. \\
{\left( {1 + \dfrac{{ - 3}}{x}} \right)^{ - 2}} = 1 + \left( { - 2} \right)\left( {\dfrac{{ - 3}}{x}} \right) + \dfrac{{\left( { - 2} \right)\left( { - 2 - 1} \right){{\left( {\dfrac{{ - 3}}{x}} \right)}^2}}}{{2!}} + \dfrac{{\left( { - 2} \right)\left( { - 2 - 1} \right)\left( { - 2 - 2} \right){{\left( {\dfrac{{ - 3}}{x}} \right)}^3}}}{{3!}} \\
$
Simplifying it, and we get:
$ {\left( {1 + \dfrac{{ - 3}}{x}} \right)^{ - 2}} = \left( {1 + \dfrac{6}{x} + \dfrac{{27}}{{{x^2}}} + \dfrac{{108}}{{{x^3}}}} \right) $
Substituting this value in $ \dfrac{1}{{{x^2}}}{\left( {1 - \dfrac{3}{x}} \right)^{ - 2}} $ :
$ \dfrac{1}{{{x^2}}}{\left( {1 + \dfrac{{ - 3}}{x}} \right)^{ - 2}} = \dfrac{1}{{{x^2}}}\left( {1 + \dfrac{6}{x} + \dfrac{{27}}{{{x^2}}} + \dfrac{{108}}{{{x^3}}}} \right) $
Opening the parenthesis on the right, side and we get:
$ \dfrac{1}{{{x^2}}}{\left( {1 + \dfrac{{ - 3}}{x}} \right)^{ - 2}} = \dfrac{1}{{{x^2}}} + \dfrac{6}{{{x^3}}} + \dfrac{{27}}{{{x^4}}} + \dfrac{{108}}{{{x^5}}} $
Since the value of $ x $ is given by \[\dfrac{{ - 3}}{x}\].And $ \left| {\dfrac{{ - 3}}{x}} \right| < 1 $ . So the value of $ x $ for which the expansion is valid is $ \left| x \right| > 3 $ .
Note: There can be an error in putting the values in the formula and get the results.
Don’t forget to multiply the coefficients in the expanded formula.
Always check up to which term values are needed.
Also remember that we are supposed to take minus power out along with common terms.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Collect pictures stories poems and information about class 10 social studies CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE