
How to expand $ {(3x - 2)^{ - 2}} $ in ascending powers of $ \dfrac{1}{x} $ , stating the first four non-zero terms and the value of $ x $ for which the expansion is valid?
Answer
503.4k+ views
Hint: Use of Binomial theorem to expand the given equation. First take out $ 3 $ common from the equation then expand the values as need using the basic formula of Binomial theorem that is $ {(1 + x)^n} = 1 + nx + \dfrac{{n(n - 1){x^2}}}{{2!}} + \dfrac{{n(n - 1)(n - 2){x^3}}}{{3!}} + .. $ just put the values accordingly and get the results.
Complete step-by-step answer:
We are given the equation $ {\left( {3 - x} \right)^{ - 2}} $ to expand in ascending orders of $ \dfrac{1}{x} $ , with four non-zero terms.
So, we are going to use the binomial theorem and from Binomial theorem we know that: $ {\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n\left( {n - 1} \right){x^2}}}{{2!}} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right){x^3}}}{{3!}} + .. $ (i)
Since we want only four non zero terms so we can stop at fourth term only.
Case $ 1 $ :
Since we need $ \left( {1 + x} \right) $ so take $ 3 $ common from the given equation and we get:
$ {3^{ - 2}}{\left( {1 - \dfrac{x}{3}} \right)^{ - 2}} $ .
On further solving we get:
$ \dfrac{1}{{{3^2}}}{\left( {1 - \dfrac{x}{3}} \right)^{ - 2}} = \dfrac{1}{9}{\left( {1 - \dfrac{x}{3}} \right)^{ - 2}} $
On equating the above term and equation (i) we get:
$ x = \dfrac{{ - x}}{3} $ and $ n = - 2 $
Just put these values in the Expansion formula (i) and we get:
$
{\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n\left( {n - 1} \right){x^2}}}{{2!}} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right){x^3}}}{{3!}} + .. \\
{\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} = 1 + \left( { - 2} \right)\left( {\dfrac{{ - x}}{3}} \right) + \dfrac{{\left( { - 2} \right)\left( { - 2 - 1} \right){{\left( {\dfrac{{ - x}}{3}} \right)}^2}}}{{2!}} + \dfrac{{\left( { - 2} \right)\left( { - 2 - 1} \right)\left( { - 2 - 2} \right){{\left( {\dfrac{{ - x}}{3}} \right)}^3}}}{{3!}} \;
$
Simplifying it, and we get:
$ {\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} = \left( {1 + \dfrac{{2x}}{3} + \dfrac{{{x^2}}}{3} + \dfrac{{4{x^3}}}{{27}}} \right) $
Substituting this value in $ \dfrac{1}{9}{\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} $ :
$ \dfrac{1}{9}{\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} = \dfrac{1}{9}\left( {1 + \dfrac{{2x}}{3} + \dfrac{{{x^2}}}{3} + \dfrac{{4{x^3}}}{{27}}} \right) $
Opening the parenthesis on the right side and we get:
$ \dfrac{1}{9}{\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} = \dfrac{1}{9} + \dfrac{{2x}}{{27}} + \dfrac{{{x^2}}}{{27}} + \dfrac{{4{x^3}}}{{243}} $ .
Since the value of $ x $ is given by $ \dfrac{{ - x}}{3} $ .And \[\left| {\dfrac{{ - x}}{3}} \right| < 1\] So the value of $ x $ for which the expansion is valid is $ \left| x \right| < 3 $ .
Case $ 2 $ :
Next, we repeat the same steps with some changes:
Since we need $ \left( {1 + x} \right) $ so take $ - x $ common now from the given equation and we get:
$ {\left( { - x} \right)^{ - 2}}{\left( {1 - \dfrac{3}{x}} \right)^{ - 2}} $
On further solving we get:
$ \dfrac{1}{{{x^2}}}{\left( {1 - \dfrac{3}{x}} \right)^{ - 2}} = \dfrac{1}{{{x^2}}}{\left( {1 - \dfrac{3}{x}} \right)^{ - 2}} $
On equating the above term and equation (i) we get:
$ x = \dfrac{{ - 3}}{x} $ and $ n = - 2 $
Just put these values in the Expansion formula (i) and we get:
$
{\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n\left( {n - 1} \right){x^2}}}{{2!}} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right){x^3}}}{{3!}} + .. \\
{\left( {1 + \dfrac{{ - 3}}{x}} \right)^{ - 2}} = 1 + \left( { - 2} \right)\left( {\dfrac{{ - 3}}{x}} \right) + \dfrac{{\left( { - 2} \right)\left( { - 2 - 1} \right){{\left( {\dfrac{{ - 3}}{x}} \right)}^2}}}{{2!}} + \dfrac{{\left( { - 2} \right)\left( { - 2 - 1} \right)\left( { - 2 - 2} \right){{\left( {\dfrac{{ - 3}}{x}} \right)}^3}}}{{3!}} \\
$
Simplifying it, and we get:
$ {\left( {1 + \dfrac{{ - 3}}{x}} \right)^{ - 2}} = \left( {1 + \dfrac{6}{x} + \dfrac{{27}}{{{x^2}}} + \dfrac{{108}}{{{x^3}}}} \right) $
Substituting this value in $ \dfrac{1}{{{x^2}}}{\left( {1 - \dfrac{3}{x}} \right)^{ - 2}} $ :
$ \dfrac{1}{{{x^2}}}{\left( {1 + \dfrac{{ - 3}}{x}} \right)^{ - 2}} = \dfrac{1}{{{x^2}}}\left( {1 + \dfrac{6}{x} + \dfrac{{27}}{{{x^2}}} + \dfrac{{108}}{{{x^3}}}} \right) $
Opening the parenthesis on the right, side and we get:
$ \dfrac{1}{{{x^2}}}{\left( {1 + \dfrac{{ - 3}}{x}} \right)^{ - 2}} = \dfrac{1}{{{x^2}}} + \dfrac{6}{{{x^3}}} + \dfrac{{27}}{{{x^4}}} + \dfrac{{108}}{{{x^5}}} $
Since the value of $ x $ is given by \[\dfrac{{ - 3}}{x}\].And $ \left| {\dfrac{{ - 3}}{x}} \right| < 1 $ . So the value of $ x $ for which the expansion is valid is $ \left| x \right| > 3 $ .
Note: There can be an error in putting the values in the formula and get the results.
Don’t forget to multiply the coefficients in the expanded formula.
Always check up to which term values are needed.
Also remember that we are supposed to take minus power out along with common terms.
Complete step-by-step answer:
We are given the equation $ {\left( {3 - x} \right)^{ - 2}} $ to expand in ascending orders of $ \dfrac{1}{x} $ , with four non-zero terms.
So, we are going to use the binomial theorem and from Binomial theorem we know that: $ {\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n\left( {n - 1} \right){x^2}}}{{2!}} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right){x^3}}}{{3!}} + .. $ (i)
Since we want only four non zero terms so we can stop at fourth term only.
Case $ 1 $ :
Since we need $ \left( {1 + x} \right) $ so take $ 3 $ common from the given equation and we get:
$ {3^{ - 2}}{\left( {1 - \dfrac{x}{3}} \right)^{ - 2}} $ .
On further solving we get:
$ \dfrac{1}{{{3^2}}}{\left( {1 - \dfrac{x}{3}} \right)^{ - 2}} = \dfrac{1}{9}{\left( {1 - \dfrac{x}{3}} \right)^{ - 2}} $
On equating the above term and equation (i) we get:
$ x = \dfrac{{ - x}}{3} $ and $ n = - 2 $
Just put these values in the Expansion formula (i) and we get:
$
{\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n\left( {n - 1} \right){x^2}}}{{2!}} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right){x^3}}}{{3!}} + .. \\
{\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} = 1 + \left( { - 2} \right)\left( {\dfrac{{ - x}}{3}} \right) + \dfrac{{\left( { - 2} \right)\left( { - 2 - 1} \right){{\left( {\dfrac{{ - x}}{3}} \right)}^2}}}{{2!}} + \dfrac{{\left( { - 2} \right)\left( { - 2 - 1} \right)\left( { - 2 - 2} \right){{\left( {\dfrac{{ - x}}{3}} \right)}^3}}}{{3!}} \;
$
Simplifying it, and we get:
$ {\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} = \left( {1 + \dfrac{{2x}}{3} + \dfrac{{{x^2}}}{3} + \dfrac{{4{x^3}}}{{27}}} \right) $
Substituting this value in $ \dfrac{1}{9}{\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} $ :
$ \dfrac{1}{9}{\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} = \dfrac{1}{9}\left( {1 + \dfrac{{2x}}{3} + \dfrac{{{x^2}}}{3} + \dfrac{{4{x^3}}}{{27}}} \right) $
Opening the parenthesis on the right side and we get:
$ \dfrac{1}{9}{\left( {1 + \dfrac{{ - x}}{3}} \right)^{ - 2}} = \dfrac{1}{9} + \dfrac{{2x}}{{27}} + \dfrac{{{x^2}}}{{27}} + \dfrac{{4{x^3}}}{{243}} $ .
Since the value of $ x $ is given by $ \dfrac{{ - x}}{3} $ .And \[\left| {\dfrac{{ - x}}{3}} \right| < 1\] So the value of $ x $ for which the expansion is valid is $ \left| x \right| < 3 $ .
Case $ 2 $ :
Next, we repeat the same steps with some changes:
Since we need $ \left( {1 + x} \right) $ so take $ - x $ common now from the given equation and we get:
$ {\left( { - x} \right)^{ - 2}}{\left( {1 - \dfrac{3}{x}} \right)^{ - 2}} $
On further solving we get:
$ \dfrac{1}{{{x^2}}}{\left( {1 - \dfrac{3}{x}} \right)^{ - 2}} = \dfrac{1}{{{x^2}}}{\left( {1 - \dfrac{3}{x}} \right)^{ - 2}} $
On equating the above term and equation (i) we get:
$ x = \dfrac{{ - 3}}{x} $ and $ n = - 2 $
Just put these values in the Expansion formula (i) and we get:
$
{\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n\left( {n - 1} \right){x^2}}}{{2!}} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right){x^3}}}{{3!}} + .. \\
{\left( {1 + \dfrac{{ - 3}}{x}} \right)^{ - 2}} = 1 + \left( { - 2} \right)\left( {\dfrac{{ - 3}}{x}} \right) + \dfrac{{\left( { - 2} \right)\left( { - 2 - 1} \right){{\left( {\dfrac{{ - 3}}{x}} \right)}^2}}}{{2!}} + \dfrac{{\left( { - 2} \right)\left( { - 2 - 1} \right)\left( { - 2 - 2} \right){{\left( {\dfrac{{ - 3}}{x}} \right)}^3}}}{{3!}} \\
$
Simplifying it, and we get:
$ {\left( {1 + \dfrac{{ - 3}}{x}} \right)^{ - 2}} = \left( {1 + \dfrac{6}{x} + \dfrac{{27}}{{{x^2}}} + \dfrac{{108}}{{{x^3}}}} \right) $
Substituting this value in $ \dfrac{1}{{{x^2}}}{\left( {1 - \dfrac{3}{x}} \right)^{ - 2}} $ :
$ \dfrac{1}{{{x^2}}}{\left( {1 + \dfrac{{ - 3}}{x}} \right)^{ - 2}} = \dfrac{1}{{{x^2}}}\left( {1 + \dfrac{6}{x} + \dfrac{{27}}{{{x^2}}} + \dfrac{{108}}{{{x^3}}}} \right) $
Opening the parenthesis on the right, side and we get:
$ \dfrac{1}{{{x^2}}}{\left( {1 + \dfrac{{ - 3}}{x}} \right)^{ - 2}} = \dfrac{1}{{{x^2}}} + \dfrac{6}{{{x^3}}} + \dfrac{{27}}{{{x^4}}} + \dfrac{{108}}{{{x^5}}} $
Since the value of $ x $ is given by \[\dfrac{{ - 3}}{x}\].And $ \left| {\dfrac{{ - 3}}{x}} \right| < 1 $ . So the value of $ x $ for which the expansion is valid is $ \left| x \right| > 3 $ .
Note: There can be an error in putting the values in the formula and get the results.
Don’t forget to multiply the coefficients in the expanded formula.
Always check up to which term values are needed.
Also remember that we are supposed to take minus power out along with common terms.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

