
How do you evaluate$\arctan \left( { - \dfrac{{\sqrt 3 }}{3}} \right)$ ?
Answer
538.8k+ views
Hint: Let us start solving this question by recalling that $\arctan \left( x \right) = {\tan ^{ - 1}}\left( x \right)$. Let us now assume that $\arctan \left( { - \dfrac{{\sqrt 3 }}{3}} \right)$ is equal to a variable and then we have to apply tangent on both sides. We already know that $\tan \left( {{{\tan }^{ - 1}}a} \right) = a$, let us proceed through the question by making use of the same. Next, we can also make use of the fact that if $\tan \theta = a$, for$a \in \mathbb{R}$, then the value of the angle $\theta $ lies in the interval $\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)$ in order to get the required solution.
Complete step by step solution:
As per the question, we are supposed to find the value of $\arctan \left( { - \dfrac{{\sqrt 3 }}{3}} \right)$. We also know that $\arctan \left( x \right) = {\tan ^{ - 1}}\left( x \right)$.
Using the same we can get,
$ \arctan \left( { - \dfrac{{\sqrt 3 }}{3}} \right) = {\tan ^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{3}} \right)$
Let us assume that ${\tan ^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{3}} \right) = \alpha $---(1)
Now, let us apply tangents on both the left-hand and right-hand side of equation (1).
$ \Rightarrow \tan \left( {{{\tan }^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{3}} \right)} \right) = \tan \alpha $---(2)
We know the identity that is, $\tan \left( {{{\tan }^{ - 1}}a} \right) = a$, for $a \in \mathbb{R}$. Now, let us use the same result in equation (2).
$ \Rightarrow - \dfrac{{\sqrt 3 }}{3} = \tan \alpha $----(3)
We also know that if $\tan \theta = a$, for$a \in \mathbb{R}$, then the value of angle $\theta $ lies in the interval $\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)$. So, we know that $\dfrac{{\sqrt 3 }}{3}$ can be simplified and can be written as $\dfrac{{\sqrt 3 }}{3} = \dfrac{1}{{\sqrt 3 }}$.
$\tan \left( {\dfrac{\pi }{6}} \right) = \dfrac{1}{{\sqrt 3 }}$, as the angle must lie in the interval $\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)$. Let us use this result in equation (3).
$ \Rightarrow \tan \left( { - \dfrac{\pi }{6}} \right) = \tan \alpha $---(4)
We know that if $\tan \theta = \tan a$, where $\theta $ belongs $\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)$, then the principal solution of angle $\alpha $ is equal to $\theta $. Let us use this identity in equation (4).
$ \therefore \alpha = - \dfrac{\pi }{6} = - {30^ \circ }$
Hence, the value of$\arctan \left( { - \dfrac{{\sqrt 3 }}{3}} \right) = - \dfrac{\pi }{6} = - {30^ \circ }$.
Note: Here, in this question we have assumed that we have to find the principal solution for the value of $\arctan \left( { - \dfrac{{\sqrt 3 }}{3}} \right)$. Before solving such a question, we first need to check whether the solution needs to be the principal solution or the general solution. The students should only report the angle that is present in the principal range of the inverse of tangent function.
Complete step by step solution:
As per the question, we are supposed to find the value of $\arctan \left( { - \dfrac{{\sqrt 3 }}{3}} \right)$. We also know that $\arctan \left( x \right) = {\tan ^{ - 1}}\left( x \right)$.
Using the same we can get,
$ \arctan \left( { - \dfrac{{\sqrt 3 }}{3}} \right) = {\tan ^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{3}} \right)$
Let us assume that ${\tan ^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{3}} \right) = \alpha $---(1)
Now, let us apply tangents on both the left-hand and right-hand side of equation (1).
$ \Rightarrow \tan \left( {{{\tan }^{ - 1}}\left( { - \dfrac{{\sqrt 3 }}{3}} \right)} \right) = \tan \alpha $---(2)
We know the identity that is, $\tan \left( {{{\tan }^{ - 1}}a} \right) = a$, for $a \in \mathbb{R}$. Now, let us use the same result in equation (2).
$ \Rightarrow - \dfrac{{\sqrt 3 }}{3} = \tan \alpha $----(3)
We also know that if $\tan \theta = a$, for$a \in \mathbb{R}$, then the value of angle $\theta $ lies in the interval $\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)$. So, we know that $\dfrac{{\sqrt 3 }}{3}$ can be simplified and can be written as $\dfrac{{\sqrt 3 }}{3} = \dfrac{1}{{\sqrt 3 }}$.
$\tan \left( {\dfrac{\pi }{6}} \right) = \dfrac{1}{{\sqrt 3 }}$, as the angle must lie in the interval $\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)$. Let us use this result in equation (3).
$ \Rightarrow \tan \left( { - \dfrac{\pi }{6}} \right) = \tan \alpha $---(4)
We know that if $\tan \theta = \tan a$, where $\theta $ belongs $\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)$, then the principal solution of angle $\alpha $ is equal to $\theta $. Let us use this identity in equation (4).
$ \therefore \alpha = - \dfrac{\pi }{6} = - {30^ \circ }$
Hence, the value of$\arctan \left( { - \dfrac{{\sqrt 3 }}{3}} \right) = - \dfrac{\pi }{6} = - {30^ \circ }$.
Note: Here, in this question we have assumed that we have to find the principal solution for the value of $\arctan \left( { - \dfrac{{\sqrt 3 }}{3}} \right)$. Before solving such a question, we first need to check whether the solution needs to be the principal solution or the general solution. The students should only report the angle that is present in the principal range of the inverse of tangent function.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

