Answer
Verified
466.8k+ views
Hint: Use L’Hopital Rule which states that if \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\dfrac{f\left( a \right)}{g\left( a \right)}=\dfrac{0}{0}\], we will evaluate the limit by \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}=\dfrac{f'\left( a \right)}{g'\left( a \right)}\], to find the limit of the given function.
Complete step-by-step answer:
To evaluate the limit, we will find the left and right hand side of the limit by substituting the given limit in the equation of function.
Thus, by applying right side of the limit, we have \[\underset{x\to {{\sqrt{6}}^{+}}}{\mathop{\lim }}\,\dfrac{\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \right)}{{{x}^{2}}-6}=\dfrac{\left( \sqrt{5+2\sqrt{6}}-\sqrt{3}+\sqrt{2} \right)}{{{\left( \sqrt{6} \right)}^{2}}-6}=\dfrac{\left( \sqrt{{{\left( \sqrt{3}+\sqrt{2} \right)}^{2}}-\sqrt{3}+\sqrt{2}} \right)}{6-6}=\infty \].
When we apply left side of the limit, we get \[\underset{x\to {{\sqrt{6}}^{-}}}{\mathop{\lim }}\,\dfrac{\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \right)}{{{x}^{2}}-6}=\dfrac{\left( \sqrt{5+2\sqrt{6}}-\sqrt{3}+\sqrt{2} \right)}{{{\left( \sqrt{6} \right)}^{2}}-6}=\dfrac{\left( \sqrt{\sqrt{{{\left( \sqrt{3}+\sqrt{2} \right)}^{2}}}-\sqrt{3}+\sqrt{2}} \right)}{6-6}=\dfrac{\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}}{-0}=-\infty \]
As \[\underset{x\to {{\sqrt{6}}^{+}}}{\mathop{\lim }}\,\dfrac{\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \right)}{{{x}^{2}}-6}=\infty \ne \underset{x\to {{\sqrt{6}}^{-}}}{\mathop{\lim }}\,\dfrac{\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \right)}{{{x}^{2}}-6}=-\infty \], we will use L’Hopital Rule to find the limit of the function which states that if \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\dfrac{f\left( a \right)}{g\left( a \right)}=\dfrac{0}{0}\], and then we will find the limit by \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}=\dfrac{f'\left( a \right)}{g'\left( a \right)}\].
Substituting \[a=\sqrt{6},f\left( x \right)=\sqrt{5+2x}-\sqrt{3}+\sqrt{2},g\left( x \right)={{x}^{2}}-6\] in the above equation, we have \[\underset{x\to \sqrt{6}}{\mathop{\lim }}\,\dfrac{\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \right)}{{{x}^{2}}-6}=\underset{x\to \sqrt{6}}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \right)}{\dfrac{d}{dx}({{x}^{2}}-6)}.....\left( 1 \right)\].
To find the value of \[\dfrac{d}{dx}\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \right)\], we will write \[f\left( x \right)=\sqrt{5+2x}-\sqrt{3}+\sqrt{2}\] as a composition of two functions \[f\left( x \right)=a\left( x \right)+b\left( x \right)\] where \[a\left( x \right)=\sqrt{5+2x},b\left( x \right)=\sqrt{2}-\sqrt{3}\].
We will use sum rule of differentiation of two functions which states that if \[y=a\left( x \right)+b\left( x \right)\] then \[\dfrac{dy}{dx}=\dfrac{d}{dx}a\left( x \right)+\dfrac{d}{dx}b\left( x \right)\].
Substituting \[a\left( x \right)=\sqrt{5+2x},b\left( x \right)=\sqrt{2}-\sqrt{3}\] in the above equation, we have \[\dfrac{dy}{dx}=\dfrac{d}{dx}\left( \sqrt{5+2x} \right)+\dfrac{d}{dx}\left( \sqrt{2}-\sqrt{3} \right).....\left( 2 \right)\].
To find the value of \[\dfrac{d}{dx}a\left( x \right)=\dfrac{d}{dx}\left( \sqrt{5+2x} \right)\], we will write \[a\left( x \right)\] as a composition of two functions \[a\left( x \right)=u\left( v\left( x \right) \right)\] where \[u\left( x \right)=\sqrt{x},v\left( x \right)=5+2x\].
We will use chain rule of composition of differentiation of two functions which states that if \[y=a\left( x \right)=u\left( v\left( x \right) \right)\] then \[\dfrac{dy}{dx}=\dfrac{du\left( v\left( x \right) \right)}{dv\left( x \right)}\times \dfrac{dv\left( x \right)}{dx}\].
Substituting \[u\left( x \right)=\sqrt{x},v\left( x \right)=5+2x\] in the above equation, we have \[\dfrac{dy}{dx}=\dfrac{du\left( v\left( x \right) \right)}{dv\left( x \right)}\times \dfrac{dv\left( x \right)}{dx}=\dfrac{d\left( \sqrt{5+2x} \right)}{d\left( 5+2x \right)}\times \dfrac{d}{dx}\left( 5+2x \right).....\left( 3 \right)\].
We know that differentiation of any function of the form \[y=a{{x}^{n}}+b\] is \[\dfrac{dy}{dx}=an{{x}^{n-1}}\].
Substituting \[a=2,n=1,b=5\] in the above equation, we have \[\dfrac{d}{dx}\left( 5+2x \right)=2.....\left( 4 \right)\].
To find the value of \[\dfrac{d\left( \sqrt{5+2x} \right)}{d\left( 5+2x \right)}\], let’s assume \[t=5+2x\].
Thus, we have \[\dfrac{d\left( \sqrt{5+2x} \right)}{d\left( 5+2x \right)}=\dfrac{d\left( \sqrt{t} \right)}{dt}\].
We know that differentiation of any function of the form \[y=a{{x}^{n}}+b\] is \[\dfrac{dy}{dx}=an{{x}^{n-1}}\].
Substituting \[a=1,n=\dfrac{1}{2},b=0\] in the above equation, we have \[\dfrac{d\left( \sqrt{t} \right)}{dt}=\dfrac{1}{2\sqrt{t}}\].
Thus, we get \[\dfrac{d\left( \sqrt{5+2x} \right)}{d\left( 5+2x \right)}=\dfrac{d\left( \sqrt{t} \right)}{dt}=\dfrac{1}{2\sqrt{t}}=\dfrac{1}{2\sqrt{5+2x}}.....\left( 5 \right)\].
Substituting equation \[\left( 4 \right)\] and \[\left( 5 \right)\] in equation \[\left( 3 \right)\], we get \[\dfrac{d}{dx}a\left( x \right)=\dfrac{d\left( \sqrt{5+2x} \right)}{d\left( 5+2x \right)}\times \dfrac{d}{dx}\left( 5+2x \right)=\dfrac{1}{2\sqrt{5+2x}}\times 2=\dfrac{1}{\sqrt{5+2x}}.....\left( 6 \right)\].
We know that differentiation of a constant is zero. Thus, we have \[\dfrac{d}{dx}b\left( x \right)=0.....\left( 7 \right)\].
Substituting equation \[\left( 6 \right)\] and \[\left( 7 \right)\] in equation \[\left( 2 \right)\], we get \[\dfrac{d}{dx}f\left( x \right)=\dfrac{d}{dx}\left( \sqrt{5+2x} \right)+\dfrac{d}{dx}\left( \sqrt{2}-\sqrt{3} \right)=\dfrac{1}{\sqrt{5+2x}}.....\left( 8 \right)\].
To find the value of \[\dfrac{d}{dx}({{x}^{2}}-6)\], we will substitute \[a=1,n=2,b=-6\] in the equation where differentiation of any function of the form \[y=a{{x}^{n}}+b\] is \[\dfrac{dy}{dx}=an{{x}^{n-1}}\].
Thus, we have \[\dfrac{d}{dx}g\left( x \right)=2x.....\left( 9 \right)\].
Substituting equation \[\left( 8 \right)\] and \[\left( 9 \right)\] in equation \[\left( 1 \right)\], we get \[\underset{x\to \sqrt{6}}{\mathop{\lim }}\,\dfrac{\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \right)}{{{x}^{2}}-6}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \right)}{\dfrac{d}{dx}({{x}^{2}}-6)}=\underset{x\to \sqrt{6}}{\mathop{\lim }}\,\dfrac{\dfrac{1}{\sqrt{5+2x}}}{2x}\].
Solving the above equation, we get \[\underset{x\to \sqrt{6}}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \right)}{\dfrac{d}{dx}({{x}^{2}}-6)}=\underset{x\to \sqrt{6}}{\mathop{\lim }}\,\dfrac{\dfrac{1}{\sqrt{5+2x}}}{2x}=\underset{x\to \sqrt{6}}{\mathop{\lim }}\,\dfrac{1}{2x\sqrt{5+2x}}=\dfrac{1}{2\sqrt{6}\sqrt{5+2\sqrt{6}}}\].
Thus, we have \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \right)}{{{x}^{2}}-6}=\dfrac{1}{2\sqrt{6}\sqrt{5+2\sqrt{6}}}\].
Note: We won’t get the correct answer without the use of L’Hopital Rule and using the identity \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\]. If we simply substitute the values in the given equation, we will get an incorrect answer. Also, one must carefully differentiate the functions in the numerator and denominator.
Complete step-by-step answer:
To evaluate the limit, we will find the left and right hand side of the limit by substituting the given limit in the equation of function.
Thus, by applying right side of the limit, we have \[\underset{x\to {{\sqrt{6}}^{+}}}{\mathop{\lim }}\,\dfrac{\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \right)}{{{x}^{2}}-6}=\dfrac{\left( \sqrt{5+2\sqrt{6}}-\sqrt{3}+\sqrt{2} \right)}{{{\left( \sqrt{6} \right)}^{2}}-6}=\dfrac{\left( \sqrt{{{\left( \sqrt{3}+\sqrt{2} \right)}^{2}}-\sqrt{3}+\sqrt{2}} \right)}{6-6}=\infty \].
When we apply left side of the limit, we get \[\underset{x\to {{\sqrt{6}}^{-}}}{\mathop{\lim }}\,\dfrac{\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \right)}{{{x}^{2}}-6}=\dfrac{\left( \sqrt{5+2\sqrt{6}}-\sqrt{3}+\sqrt{2} \right)}{{{\left( \sqrt{6} \right)}^{2}}-6}=\dfrac{\left( \sqrt{\sqrt{{{\left( \sqrt{3}+\sqrt{2} \right)}^{2}}}-\sqrt{3}+\sqrt{2}} \right)}{6-6}=\dfrac{\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}}{-0}=-\infty \]
As \[\underset{x\to {{\sqrt{6}}^{+}}}{\mathop{\lim }}\,\dfrac{\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \right)}{{{x}^{2}}-6}=\infty \ne \underset{x\to {{\sqrt{6}}^{-}}}{\mathop{\lim }}\,\dfrac{\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \right)}{{{x}^{2}}-6}=-\infty \], we will use L’Hopital Rule to find the limit of the function which states that if \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\dfrac{f\left( a \right)}{g\left( a \right)}=\dfrac{0}{0}\], and then we will find the limit by \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}=\dfrac{f'\left( a \right)}{g'\left( a \right)}\].
Substituting \[a=\sqrt{6},f\left( x \right)=\sqrt{5+2x}-\sqrt{3}+\sqrt{2},g\left( x \right)={{x}^{2}}-6\] in the above equation, we have \[\underset{x\to \sqrt{6}}{\mathop{\lim }}\,\dfrac{\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \right)}{{{x}^{2}}-6}=\underset{x\to \sqrt{6}}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \right)}{\dfrac{d}{dx}({{x}^{2}}-6)}.....\left( 1 \right)\].
To find the value of \[\dfrac{d}{dx}\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \right)\], we will write \[f\left( x \right)=\sqrt{5+2x}-\sqrt{3}+\sqrt{2}\] as a composition of two functions \[f\left( x \right)=a\left( x \right)+b\left( x \right)\] where \[a\left( x \right)=\sqrt{5+2x},b\left( x \right)=\sqrt{2}-\sqrt{3}\].
We will use sum rule of differentiation of two functions which states that if \[y=a\left( x \right)+b\left( x \right)\] then \[\dfrac{dy}{dx}=\dfrac{d}{dx}a\left( x \right)+\dfrac{d}{dx}b\left( x \right)\].
Substituting \[a\left( x \right)=\sqrt{5+2x},b\left( x \right)=\sqrt{2}-\sqrt{3}\] in the above equation, we have \[\dfrac{dy}{dx}=\dfrac{d}{dx}\left( \sqrt{5+2x} \right)+\dfrac{d}{dx}\left( \sqrt{2}-\sqrt{3} \right).....\left( 2 \right)\].
To find the value of \[\dfrac{d}{dx}a\left( x \right)=\dfrac{d}{dx}\left( \sqrt{5+2x} \right)\], we will write \[a\left( x \right)\] as a composition of two functions \[a\left( x \right)=u\left( v\left( x \right) \right)\] where \[u\left( x \right)=\sqrt{x},v\left( x \right)=5+2x\].
We will use chain rule of composition of differentiation of two functions which states that if \[y=a\left( x \right)=u\left( v\left( x \right) \right)\] then \[\dfrac{dy}{dx}=\dfrac{du\left( v\left( x \right) \right)}{dv\left( x \right)}\times \dfrac{dv\left( x \right)}{dx}\].
Substituting \[u\left( x \right)=\sqrt{x},v\left( x \right)=5+2x\] in the above equation, we have \[\dfrac{dy}{dx}=\dfrac{du\left( v\left( x \right) \right)}{dv\left( x \right)}\times \dfrac{dv\left( x \right)}{dx}=\dfrac{d\left( \sqrt{5+2x} \right)}{d\left( 5+2x \right)}\times \dfrac{d}{dx}\left( 5+2x \right).....\left( 3 \right)\].
We know that differentiation of any function of the form \[y=a{{x}^{n}}+b\] is \[\dfrac{dy}{dx}=an{{x}^{n-1}}\].
Substituting \[a=2,n=1,b=5\] in the above equation, we have \[\dfrac{d}{dx}\left( 5+2x \right)=2.....\left( 4 \right)\].
To find the value of \[\dfrac{d\left( \sqrt{5+2x} \right)}{d\left( 5+2x \right)}\], let’s assume \[t=5+2x\].
Thus, we have \[\dfrac{d\left( \sqrt{5+2x} \right)}{d\left( 5+2x \right)}=\dfrac{d\left( \sqrt{t} \right)}{dt}\].
We know that differentiation of any function of the form \[y=a{{x}^{n}}+b\] is \[\dfrac{dy}{dx}=an{{x}^{n-1}}\].
Substituting \[a=1,n=\dfrac{1}{2},b=0\] in the above equation, we have \[\dfrac{d\left( \sqrt{t} \right)}{dt}=\dfrac{1}{2\sqrt{t}}\].
Thus, we get \[\dfrac{d\left( \sqrt{5+2x} \right)}{d\left( 5+2x \right)}=\dfrac{d\left( \sqrt{t} \right)}{dt}=\dfrac{1}{2\sqrt{t}}=\dfrac{1}{2\sqrt{5+2x}}.....\left( 5 \right)\].
Substituting equation \[\left( 4 \right)\] and \[\left( 5 \right)\] in equation \[\left( 3 \right)\], we get \[\dfrac{d}{dx}a\left( x \right)=\dfrac{d\left( \sqrt{5+2x} \right)}{d\left( 5+2x \right)}\times \dfrac{d}{dx}\left( 5+2x \right)=\dfrac{1}{2\sqrt{5+2x}}\times 2=\dfrac{1}{\sqrt{5+2x}}.....\left( 6 \right)\].
We know that differentiation of a constant is zero. Thus, we have \[\dfrac{d}{dx}b\left( x \right)=0.....\left( 7 \right)\].
Substituting equation \[\left( 6 \right)\] and \[\left( 7 \right)\] in equation \[\left( 2 \right)\], we get \[\dfrac{d}{dx}f\left( x \right)=\dfrac{d}{dx}\left( \sqrt{5+2x} \right)+\dfrac{d}{dx}\left( \sqrt{2}-\sqrt{3} \right)=\dfrac{1}{\sqrt{5+2x}}.....\left( 8 \right)\].
To find the value of \[\dfrac{d}{dx}({{x}^{2}}-6)\], we will substitute \[a=1,n=2,b=-6\] in the equation where differentiation of any function of the form \[y=a{{x}^{n}}+b\] is \[\dfrac{dy}{dx}=an{{x}^{n-1}}\].
Thus, we have \[\dfrac{d}{dx}g\left( x \right)=2x.....\left( 9 \right)\].
Substituting equation \[\left( 8 \right)\] and \[\left( 9 \right)\] in equation \[\left( 1 \right)\], we get \[\underset{x\to \sqrt{6}}{\mathop{\lim }}\,\dfrac{\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \right)}{{{x}^{2}}-6}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \right)}{\dfrac{d}{dx}({{x}^{2}}-6)}=\underset{x\to \sqrt{6}}{\mathop{\lim }}\,\dfrac{\dfrac{1}{\sqrt{5+2x}}}{2x}\].
Solving the above equation, we get \[\underset{x\to \sqrt{6}}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \right)}{\dfrac{d}{dx}({{x}^{2}}-6)}=\underset{x\to \sqrt{6}}{\mathop{\lim }}\,\dfrac{\dfrac{1}{\sqrt{5+2x}}}{2x}=\underset{x\to \sqrt{6}}{\mathop{\lim }}\,\dfrac{1}{2x\sqrt{5+2x}}=\dfrac{1}{2\sqrt{6}\sqrt{5+2\sqrt{6}}}\].
Thus, we have \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\left( \sqrt{5+2x}-\sqrt{3}+\sqrt{2} \right)}{{{x}^{2}}-6}=\dfrac{1}{2\sqrt{6}\sqrt{5+2\sqrt{6}}}\].
Note: We won’t get the correct answer without the use of L’Hopital Rule and using the identity \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\]. If we simply substitute the values in the given equation, we will get an incorrect answer. Also, one must carefully differentiate the functions in the numerator and denominator.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Select the word that is correctly spelled a Twelveth class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What organs are located on the left side of your body class 11 biology CBSE