Answer

Verified

405.9k+ views

**Hint:**The given problem is pretty easy and you can solve it in a few steps. Here, you can use the concept of limits and you will let a condition that when x=a, then assume the form as$\dfrac{0}{0}$. So, let’s see how we can solve the given problem.

**Step-By-Step Solution:**

The given problem statement is we need to evaluate$\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{(2+x)}^{5/2}}-{{(a+2)}^{5/2}}}{x-a}$.

Firstly, when x=a, the expression $\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{(2+x)}^{5/2}}-{{(a+2)}^{5/2}}}{x-a}$ assumes the form as$\dfrac{0}{0}$.

So, we will let$Z=\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{(2+x)}^{5/2}}-{{(a+2)}^{5/2}}}{x-a}$.

If we use the formula$\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{n}^{a}}-{{a}^{n}}}{n-a}=n{{a}^{n-1}}$, then also Z will not show the form$\dfrac{0}{0}$as mentioned.

So, we need to simplify, that means,

Now, we will add 2 in the denominator, but we will not change the denominator so we will subtract 2 also, that means, we get,

$\Rightarrow Z=\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{(2+x)}^{5/2}}-{{(a+2)}^{5/2}}}{2+x-(a+2)}$

Now, we will let 2+x=y and a+2=k, as$x\to a;y\to k$, we get,

$\Rightarrow Z=\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{y}^{5/2}}-{{k}^{5/2}}}{y-k}$

Now, we will use the formula$\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{n}^{a}}-{{a}^{n}}}{n-a}=n{{a}^{n-1}}$, we get,

$\Rightarrow Z=\dfrac{5}{2}{{k}^{\dfrac{5}{2}-1}}$

$\Rightarrow Z=\dfrac{5}{2}{{k}^{\dfrac{3}{2}}}$

Now, we will place the value of k in the above equation, we get,

$\Rightarrow Z=\dfrac{5}{2}{{(a+2)}^{\dfrac{3}{2}}}$

**Therefore, after evaluation of$\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{(2+x)}^{5/2}}-{{(a+2)}^{5/2}}}{x-a}$, we get, $\dfrac{5}{2}{{(a+2)}^{\dfrac{3}{2}}}$.**

**Note:**

You just need to note for the evaluation for the above question we need to check if it is in the form of $\dfrac{0}{0}$, if it is not then we will continue to simplify. Here, in this question we used the formula $\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{n}^{a}}-{{a}^{n}}}{n-a}=n{{a}^{n-1}}$ in the simplification.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Mark and label the given geoinformation on the outline class 11 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Which are the Top 10 Largest Countries of the World?

One cusec is equal to how many liters class 8 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

The mountain range which stretches from Gujarat in class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths