Evaluate $\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{(2+x)}^{5/2}}-{{(a+2)}^{5/2}}}{x-a}$.
Answer
Verified
436.8k+ views
Hint: The given problem is pretty easy and you can solve it in a few steps. Here, you can use the concept of limits and you will let a condition that when x=a, then assume the form as$\dfrac{0}{0}$. So, let’s see how we can solve the given problem.
Step-By-Step Solution:
The given problem statement is we need to evaluate$\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{(2+x)}^{5/2}}-{{(a+2)}^{5/2}}}{x-a}$.
Firstly, when x=a, the expression $\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{(2+x)}^{5/2}}-{{(a+2)}^{5/2}}}{x-a}$ assumes the form as$\dfrac{0}{0}$.
So, we will let$Z=\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{(2+x)}^{5/2}}-{{(a+2)}^{5/2}}}{x-a}$.
If we use the formula$\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{n}^{a}}-{{a}^{n}}}{n-a}=n{{a}^{n-1}}$, then also Z will not show the form$\dfrac{0}{0}$as mentioned.
So, we need to simplify, that means,
Now, we will add 2 in the denominator, but we will not change the denominator so we will subtract 2 also, that means, we get,
$\Rightarrow Z=\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{(2+x)}^{5/2}}-{{(a+2)}^{5/2}}}{2+x-(a+2)}$
Now, we will let 2+x=y and a+2=k, as$x\to a;y\to k$, we get,
$\Rightarrow Z=\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{y}^{5/2}}-{{k}^{5/2}}}{y-k}$
Now, we will use the formula$\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{n}^{a}}-{{a}^{n}}}{n-a}=n{{a}^{n-1}}$, we get,
$\Rightarrow Z=\dfrac{5}{2}{{k}^{\dfrac{5}{2}-1}}$
$\Rightarrow Z=\dfrac{5}{2}{{k}^{\dfrac{3}{2}}}$
Now, we will place the value of k in the above equation, we get,
$\Rightarrow Z=\dfrac{5}{2}{{(a+2)}^{\dfrac{3}{2}}}$
Therefore, after evaluation of$\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{(2+x)}^{5/2}}-{{(a+2)}^{5/2}}}{x-a}$, we get, $\dfrac{5}{2}{{(a+2)}^{\dfrac{3}{2}}}$.
Note:
You just need to note for the evaluation for the above question we need to check if it is in the form of $\dfrac{0}{0}$, if it is not then we will continue to simplify. Here, in this question we used the formula $\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{n}^{a}}-{{a}^{n}}}{n-a}=n{{a}^{n-1}}$ in the simplification.
Step-By-Step Solution:
The given problem statement is we need to evaluate$\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{(2+x)}^{5/2}}-{{(a+2)}^{5/2}}}{x-a}$.
Firstly, when x=a, the expression $\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{(2+x)}^{5/2}}-{{(a+2)}^{5/2}}}{x-a}$ assumes the form as$\dfrac{0}{0}$.
So, we will let$Z=\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{(2+x)}^{5/2}}-{{(a+2)}^{5/2}}}{x-a}$.
If we use the formula$\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{n}^{a}}-{{a}^{n}}}{n-a}=n{{a}^{n-1}}$, then also Z will not show the form$\dfrac{0}{0}$as mentioned.
So, we need to simplify, that means,
Now, we will add 2 in the denominator, but we will not change the denominator so we will subtract 2 also, that means, we get,
$\Rightarrow Z=\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{(2+x)}^{5/2}}-{{(a+2)}^{5/2}}}{2+x-(a+2)}$
Now, we will let 2+x=y and a+2=k, as$x\to a;y\to k$, we get,
$\Rightarrow Z=\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{y}^{5/2}}-{{k}^{5/2}}}{y-k}$
Now, we will use the formula$\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{n}^{a}}-{{a}^{n}}}{n-a}=n{{a}^{n-1}}$, we get,
$\Rightarrow Z=\dfrac{5}{2}{{k}^{\dfrac{5}{2}-1}}$
$\Rightarrow Z=\dfrac{5}{2}{{k}^{\dfrac{3}{2}}}$
Now, we will place the value of k in the above equation, we get,
$\Rightarrow Z=\dfrac{5}{2}{{(a+2)}^{\dfrac{3}{2}}}$
Therefore, after evaluation of$\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{(2+x)}^{5/2}}-{{(a+2)}^{5/2}}}{x-a}$, we get, $\dfrac{5}{2}{{(a+2)}^{\dfrac{3}{2}}}$.
Note:
You just need to note for the evaluation for the above question we need to check if it is in the form of $\dfrac{0}{0}$, if it is not then we will continue to simplify. Here, in this question we used the formula $\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{n}^{a}}-{{a}^{n}}}{n-a}=n{{a}^{n-1}}$ in the simplification.
Recently Updated Pages
Difference Between Prokaryotic Cells and Eukaryotic Cells
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
What is spore formation class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
What are the limitations of Rutherfords model of an class 11 chemistry CBSE