Answer
Verified
405.9k+ views
Hint: The given problem is pretty easy and you can solve it in a few steps. Here, you can use the concept of limits and you will let a condition that when x=a, then assume the form as$\dfrac{0}{0}$. So, let’s see how we can solve the given problem.
Step-By-Step Solution:
The given problem statement is we need to evaluate$\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{(2+x)}^{5/2}}-{{(a+2)}^{5/2}}}{x-a}$.
Firstly, when x=a, the expression $\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{(2+x)}^{5/2}}-{{(a+2)}^{5/2}}}{x-a}$ assumes the form as$\dfrac{0}{0}$.
So, we will let$Z=\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{(2+x)}^{5/2}}-{{(a+2)}^{5/2}}}{x-a}$.
If we use the formula$\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{n}^{a}}-{{a}^{n}}}{n-a}=n{{a}^{n-1}}$, then also Z will not show the form$\dfrac{0}{0}$as mentioned.
So, we need to simplify, that means,
Now, we will add 2 in the denominator, but we will not change the denominator so we will subtract 2 also, that means, we get,
$\Rightarrow Z=\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{(2+x)}^{5/2}}-{{(a+2)}^{5/2}}}{2+x-(a+2)}$
Now, we will let 2+x=y and a+2=k, as$x\to a;y\to k$, we get,
$\Rightarrow Z=\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{y}^{5/2}}-{{k}^{5/2}}}{y-k}$
Now, we will use the formula$\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{n}^{a}}-{{a}^{n}}}{n-a}=n{{a}^{n-1}}$, we get,
$\Rightarrow Z=\dfrac{5}{2}{{k}^{\dfrac{5}{2}-1}}$
$\Rightarrow Z=\dfrac{5}{2}{{k}^{\dfrac{3}{2}}}$
Now, we will place the value of k in the above equation, we get,
$\Rightarrow Z=\dfrac{5}{2}{{(a+2)}^{\dfrac{3}{2}}}$
Therefore, after evaluation of$\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{(2+x)}^{5/2}}-{{(a+2)}^{5/2}}}{x-a}$, we get, $\dfrac{5}{2}{{(a+2)}^{\dfrac{3}{2}}}$.
Note:
You just need to note for the evaluation for the above question we need to check if it is in the form of $\dfrac{0}{0}$, if it is not then we will continue to simplify. Here, in this question we used the formula $\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{n}^{a}}-{{a}^{n}}}{n-a}=n{{a}^{n-1}}$ in the simplification.
Step-By-Step Solution:
The given problem statement is we need to evaluate$\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{(2+x)}^{5/2}}-{{(a+2)}^{5/2}}}{x-a}$.
Firstly, when x=a, the expression $\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{(2+x)}^{5/2}}-{{(a+2)}^{5/2}}}{x-a}$ assumes the form as$\dfrac{0}{0}$.
So, we will let$Z=\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{(2+x)}^{5/2}}-{{(a+2)}^{5/2}}}{x-a}$.
If we use the formula$\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{n}^{a}}-{{a}^{n}}}{n-a}=n{{a}^{n-1}}$, then also Z will not show the form$\dfrac{0}{0}$as mentioned.
So, we need to simplify, that means,
Now, we will add 2 in the denominator, but we will not change the denominator so we will subtract 2 also, that means, we get,
$\Rightarrow Z=\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{(2+x)}^{5/2}}-{{(a+2)}^{5/2}}}{2+x-(a+2)}$
Now, we will let 2+x=y and a+2=k, as$x\to a;y\to k$, we get,
$\Rightarrow Z=\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{y}^{5/2}}-{{k}^{5/2}}}{y-k}$
Now, we will use the formula$\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{n}^{a}}-{{a}^{n}}}{n-a}=n{{a}^{n-1}}$, we get,
$\Rightarrow Z=\dfrac{5}{2}{{k}^{\dfrac{5}{2}-1}}$
$\Rightarrow Z=\dfrac{5}{2}{{k}^{\dfrac{3}{2}}}$
Now, we will place the value of k in the above equation, we get,
$\Rightarrow Z=\dfrac{5}{2}{{(a+2)}^{\dfrac{3}{2}}}$
Therefore, after evaluation of$\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{(2+x)}^{5/2}}-{{(a+2)}^{5/2}}}{x-a}$, we get, $\dfrac{5}{2}{{(a+2)}^{\dfrac{3}{2}}}$.
Note:
You just need to note for the evaluation for the above question we need to check if it is in the form of $\dfrac{0}{0}$, if it is not then we will continue to simplify. Here, in this question we used the formula $\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{n}^{a}}-{{a}^{n}}}{n-a}=n{{a}^{n-1}}$ in the simplification.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The mountain range which stretches from Gujarat in class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths