
Evaluate the value of $\int {{{\tan }^4}xdx} $ .
Answer
564.9k+ views
Hint:
Here, we are asked to find the value of $\int {{{\tan }^4}xdx} $ .
Let, $I = \int {{{\tan }^4}xdx} $ and write ${\tan ^4}x$ as ${\tan ^2}x \cdot {\tan ^2}x$ .
Then, put ${\tan ^2}x = {\sec ^2}x - 1$ in any one of the values.
Thus, solve the value of I further to get the required answer.
Complete step by step solution:
Here, we are asked to find the value of $\int {{{\tan }^4}xdx} $ .
Let, $I = \int {{{\tan }^4}xdx} $ .
Now, we can write ${\tan ^4}x$ as ${\tan ^2}x \cdot {\tan ^2}x$
$\therefore I = \int {{{\tan }^2}x \cdot {{\tan }^2}xdx} $
Also, we know that ${\tan ^2}x = {\sec ^2}x - 1$
$\therefore I = \int {{{\tan }^2}x\left( {{{\sec }^2}x - 1} \right)dx} $
$\therefore I = \int {\left( {{{\tan }^2}x{{\sec }^2}x - {{\tan }^2}x} \right)dx} $
$
\therefore I = \int {{{\tan }^2}x{{\sec }^2}xdx} - \int {{{\tan }^2}xdx} \\
\therefore I = \int {{{\tan }^2}x{{\sec }^2}xdx} - \int {\left( {{{\sec }^2}x - 1} \right)dx} \\
\therefore I = \int {{{\tan }^2}x{{\sec }^2}xdx} - \int {{{\sec }^2}xdx} + \int {dx} \\
\therefore I = \int {{{\tan }^2}x{{\sec }^2}xdx} - \int {{{\sec }^2}xdx} + x + C \\
$
Now, to solve further, let $\tan x = t$
$\therefore {\sec ^2}xdx = dt$
$\therefore I = \int {{t^2}dt} - \int {dt} + x + C$
$\therefore I = \dfrac{{{t^3}}}{3} - t + x + C$
Now, we shall return back the substituted value $\tan x = t$ in the above equation.
$\therefore I = \dfrac{{{{\tan }^3}x}}{3} - \tan x + x + C$
Thus, $\int {{{\tan }^4}xdx} = \dfrac{{{{\tan }^3}x}}{3} - \tan x + x + C$.
Note:
Alternate method:
Here, we are asked to find the value of $\int {{{\tan }^4}xdx} $ .
Let, $I = \int {{{\tan }^4}xdx} $ .
Now, $I = \int {\left( {{{\tan }^4}x + 1 - 1} \right)dx} $
$
\therefore I = \int {\left( {{{\tan }^4}x - 1} \right)dx} + \int {1dx} \\
\therefore I = \int {\left( {{{\tan }^2}x - 1} \right)\left( {{{\tan }^2}x + 1} \right)dx} + x + C \\
$
Since, ${\tan ^2}x + 1 = {\sec ^2}x$
$\therefore I = \int {{{\sec }^2}x\left( {{{\tan }^2}x - 1} \right)dx} + x + C$
$\therefore I = \int {{{\tan }^2}x{{\sec }^2}xdx} - \int {{{\sec }^2}xdx} + x + C$
Now, to solve further, let $\tan x = t$
$\therefore {\sec ^2}xdx = dt$
$\therefore I = \int {{t^2}dt} - \int {dt} + x + C$
$\therefore I = \dfrac{{{t^3}}}{3} - t + x + C$
Now, we shall return back the substituted value $\tan x = t$ in the above equation.
$\therefore I = \dfrac{{{{\tan }^3}x}}{3} - \tan x + x + C$
Thus, $\int {{{\tan }^4}xdx} = \dfrac{{{{\tan }^3}x}}{3} - \tan x + x + C$ .
Here, we are asked to find the value of $\int {{{\tan }^4}xdx} $ .
Let, $I = \int {{{\tan }^4}xdx} $ and write ${\tan ^4}x$ as ${\tan ^2}x \cdot {\tan ^2}x$ .
Then, put ${\tan ^2}x = {\sec ^2}x - 1$ in any one of the values.
Thus, solve the value of I further to get the required answer.
Complete step by step solution:
Here, we are asked to find the value of $\int {{{\tan }^4}xdx} $ .
Let, $I = \int {{{\tan }^4}xdx} $ .
Now, we can write ${\tan ^4}x$ as ${\tan ^2}x \cdot {\tan ^2}x$
$\therefore I = \int {{{\tan }^2}x \cdot {{\tan }^2}xdx} $
Also, we know that ${\tan ^2}x = {\sec ^2}x - 1$
$\therefore I = \int {{{\tan }^2}x\left( {{{\sec }^2}x - 1} \right)dx} $
$\therefore I = \int {\left( {{{\tan }^2}x{{\sec }^2}x - {{\tan }^2}x} \right)dx} $
$
\therefore I = \int {{{\tan }^2}x{{\sec }^2}xdx} - \int {{{\tan }^2}xdx} \\
\therefore I = \int {{{\tan }^2}x{{\sec }^2}xdx} - \int {\left( {{{\sec }^2}x - 1} \right)dx} \\
\therefore I = \int {{{\tan }^2}x{{\sec }^2}xdx} - \int {{{\sec }^2}xdx} + \int {dx} \\
\therefore I = \int {{{\tan }^2}x{{\sec }^2}xdx} - \int {{{\sec }^2}xdx} + x + C \\
$
Now, to solve further, let $\tan x = t$
$\therefore {\sec ^2}xdx = dt$
$\therefore I = \int {{t^2}dt} - \int {dt} + x + C$
$\therefore I = \dfrac{{{t^3}}}{3} - t + x + C$
Now, we shall return back the substituted value $\tan x = t$ in the above equation.
$\therefore I = \dfrac{{{{\tan }^3}x}}{3} - \tan x + x + C$
Thus, $\int {{{\tan }^4}xdx} = \dfrac{{{{\tan }^3}x}}{3} - \tan x + x + C$.
Note:
Alternate method:
Here, we are asked to find the value of $\int {{{\tan }^4}xdx} $ .
Let, $I = \int {{{\tan }^4}xdx} $ .
Now, $I = \int {\left( {{{\tan }^4}x + 1 - 1} \right)dx} $
$
\therefore I = \int {\left( {{{\tan }^4}x - 1} \right)dx} + \int {1dx} \\
\therefore I = \int {\left( {{{\tan }^2}x - 1} \right)\left( {{{\tan }^2}x + 1} \right)dx} + x + C \\
$
Since, ${\tan ^2}x + 1 = {\sec ^2}x$
$\therefore I = \int {{{\sec }^2}x\left( {{{\tan }^2}x - 1} \right)dx} + x + C$
$\therefore I = \int {{{\tan }^2}x{{\sec }^2}xdx} - \int {{{\sec }^2}xdx} + x + C$
Now, to solve further, let $\tan x = t$
$\therefore {\sec ^2}xdx = dt$
$\therefore I = \int {{t^2}dt} - \int {dt} + x + C$
$\therefore I = \dfrac{{{t^3}}}{3} - t + x + C$
Now, we shall return back the substituted value $\tan x = t$ in the above equation.
$\therefore I = \dfrac{{{{\tan }^3}x}}{3} - \tan x + x + C$
Thus, $\int {{{\tan }^4}xdx} = \dfrac{{{{\tan }^3}x}}{3} - \tan x + x + C$ .
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

