
Evaluate the integral $\int\limits_{0}^{\pi }{\dfrac{x\sin x}{1+\sin x}dx}$.
Answer
604.8k+ views
Hint: Solve the integral by replacing x by $\left( \pi -x \right)$as per $\int\limits_{0}^{a}{f\left( x \right)dx=}\int\limits_{0}^{a}{f\left( a-x \right)dx}$. Then simplify it using trigonometric identities. Finally, after integration substitute $\left( \pi ,0 \right)$in the place of x.
Complete step-by-step solution -
Given the integral, $\int\limits_{0}^{\pi }{\dfrac{x\sin x}{1+\sin x}dx}$.
Let’s put, $I=\int\limits_{0}^{\pi }{\dfrac{x\sin x}{1+\sin x}dx}$.
We know that, $\int\limits_{0}^{a}{f\left( x \right)dx=}\int\limits_{0}^{a}{f\left( a-x \right)dx}$.
Thus, x becomes $\left( \pi -x \right)$.
$\therefore I=\int\limits_{0}^{\pi }{\dfrac{\left( \pi -x \right)\sin x}{1+\sin \left( \pi -x \right)}dx}$
We know, \[\sin \left( 180-\theta \right)=\sin \theta \]
\[\sin \left( \pi -x \right)=\sin x\]
\[\begin{align}
& I=\int\limits_{0}^{\pi }{\dfrac{\left( \pi -x \right)\sin x}{1+\sin x}}=\int\limits_{0}^{\pi }{\left( \dfrac{\pi \sin x-x\sin x}{1+\sin x} \right)dx} \\
& I=\int\limits_{0}^{\pi }{\left( \dfrac{\pi \sin x}{1+\sin x}-\dfrac{x\sin x}{1+\sin x} \right)dx} \\
\end{align}\]
\[I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx}-\int\limits_{0}^{\pi }{\dfrac{x\sin x}{1+\sin x}dx}\]
\[I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx}-I\]
\[\begin{align}
& \Rightarrow I+I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx} \\
& 2I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx} \\
& \therefore I=\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x}{1+\sin x}dx} \\
\end{align}\]
Multiply numerator and denominator with \[\left( 1-\sin x \right)\].
\[\begin{align}
& I=\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x\left( 1-\sin x \right)}{\left( 1+\sin x \right)\left( 1-\sin x \right)}dx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x\left( 1-\sin x \right)}{1-{{\sin }^{2}}x}dx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x-{{\sin }^{2}}x}{1-{{\sin }^{2}}x}dx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x}{{{\cos }^{2}}x}dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{{{\sin }^{2}}x}{{{\cos }^{2}}x}dx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\tan x}{\cos x}dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{{{\tan }^{2}}xdx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\tan x.\sec x.dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{{{\tan }^{2}}x.dx} \\
\end{align}\]
We know, \[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\].
\[\begin{align}
& {{\sin }^{2}}x+{{\cos }^{2}}x=1 \\
& \therefore {{\cos }^{2}}x=1-{{\sin }^{2}}x \\
& \tan x=\dfrac{\sin x}{\cos x} \\
\end{align}\]
Which are basic, trigonometric formulae.
\[\because \dfrac{1}{\cos x}=\sec x\]
We know \[\int{\tan x.\sec x=\sec x}\]and \[\int{{{\sec }^{2}}x=\tan x}\].
Similarly, \[{{\tan }^{2}}x={{\sec }^{2}}x-1\].
\[\begin{align}
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\tan x.\sec x.dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\left( {{\sec }^{2}}-1 \right)dx} \\
& =\dfrac{\pi }{2}\left[ \sec x \right]_{0}^{\pi }-\dfrac{\pi }{2}\left[ \int\limits_{0}^{\pi }{{{\sec }^{2}}x}dx-\int\limits_{0}^{\pi }{1.dx} \right] \\
& =\dfrac{\pi }{2}\left[ \sec x \right]_{0}^{\pi }-\dfrac{\pi }{2}\left[ \left[ \tan x \right]_{0}^{\pi }-\left[ x \right]_{0}^{\pi } \right] \\
& =\dfrac{\pi }{2}\left[ \left[ \sec x \right]_{0}^{\pi }-\left[ \tan x \right]_{0}^{\pi }+\left[ x \right]_{0}^{\pi } \right] \\
& =\dfrac{\pi }{2}\left[ \left( \sec \pi -\sec 0 \right)-\left( \tan \pi -\tan 0 \right)+\left( \pi -0 \right) \right] \\
\end{align}\]
\[\sec \pi =-1\] \[\tan \pi =0\]
\[\sec 0=+1\] \[\tan 0=0\]
\[\begin{align}
& =\dfrac{\pi }{2}\left[ \left[ -1-1 \right]+\pi \right] \\
& =\dfrac{\pi }{2}\left[ -2+\pi \right] \\
& =\dfrac{\pi \left( \pi -2 \right)}{2} \\
& \therefore I=\dfrac{\pi \left( \pi -2 \right)}{2} \\
\end{align}\]
Hence, by evaluating the integral, we get \[\dfrac{\pi \left( \pi -2 \right)}{2}\].
Note:- Be careful while simplifying the integral. Open brackets, don’t mix up the sign. Remember the basic identities and trigonometric formulae. You should learn the integral values of \[\tan x.\sec x,{{\sec }^{2}}x\] etc, which we have used in solving the integral. Finally substitute \[\left( \pi ,0 \right)\]and simplify the expression.
Complete step-by-step solution -
Given the integral, $\int\limits_{0}^{\pi }{\dfrac{x\sin x}{1+\sin x}dx}$.
Let’s put, $I=\int\limits_{0}^{\pi }{\dfrac{x\sin x}{1+\sin x}dx}$.
We know that, $\int\limits_{0}^{a}{f\left( x \right)dx=}\int\limits_{0}^{a}{f\left( a-x \right)dx}$.
Thus, x becomes $\left( \pi -x \right)$.
$\therefore I=\int\limits_{0}^{\pi }{\dfrac{\left( \pi -x \right)\sin x}{1+\sin \left( \pi -x \right)}dx}$
We know, \[\sin \left( 180-\theta \right)=\sin \theta \]
\[\sin \left( \pi -x \right)=\sin x\]
\[\begin{align}
& I=\int\limits_{0}^{\pi }{\dfrac{\left( \pi -x \right)\sin x}{1+\sin x}}=\int\limits_{0}^{\pi }{\left( \dfrac{\pi \sin x-x\sin x}{1+\sin x} \right)dx} \\
& I=\int\limits_{0}^{\pi }{\left( \dfrac{\pi \sin x}{1+\sin x}-\dfrac{x\sin x}{1+\sin x} \right)dx} \\
\end{align}\]
\[I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx}-\int\limits_{0}^{\pi }{\dfrac{x\sin x}{1+\sin x}dx}\]
\[I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx}-I\]
\[\begin{align}
& \Rightarrow I+I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx} \\
& 2I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx} \\
& \therefore I=\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x}{1+\sin x}dx} \\
\end{align}\]
Multiply numerator and denominator with \[\left( 1-\sin x \right)\].
\[\begin{align}
& I=\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x\left( 1-\sin x \right)}{\left( 1+\sin x \right)\left( 1-\sin x \right)}dx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x\left( 1-\sin x \right)}{1-{{\sin }^{2}}x}dx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x-{{\sin }^{2}}x}{1-{{\sin }^{2}}x}dx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x}{{{\cos }^{2}}x}dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{{{\sin }^{2}}x}{{{\cos }^{2}}x}dx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\tan x}{\cos x}dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{{{\tan }^{2}}xdx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\tan x.\sec x.dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{{{\tan }^{2}}x.dx} \\
\end{align}\]
We know, \[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\].
\[\begin{align}
& {{\sin }^{2}}x+{{\cos }^{2}}x=1 \\
& \therefore {{\cos }^{2}}x=1-{{\sin }^{2}}x \\
& \tan x=\dfrac{\sin x}{\cos x} \\
\end{align}\]
Which are basic, trigonometric formulae.
\[\because \dfrac{1}{\cos x}=\sec x\]
We know \[\int{\tan x.\sec x=\sec x}\]and \[\int{{{\sec }^{2}}x=\tan x}\].
Similarly, \[{{\tan }^{2}}x={{\sec }^{2}}x-1\].
\[\begin{align}
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\tan x.\sec x.dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\left( {{\sec }^{2}}-1 \right)dx} \\
& =\dfrac{\pi }{2}\left[ \sec x \right]_{0}^{\pi }-\dfrac{\pi }{2}\left[ \int\limits_{0}^{\pi }{{{\sec }^{2}}x}dx-\int\limits_{0}^{\pi }{1.dx} \right] \\
& =\dfrac{\pi }{2}\left[ \sec x \right]_{0}^{\pi }-\dfrac{\pi }{2}\left[ \left[ \tan x \right]_{0}^{\pi }-\left[ x \right]_{0}^{\pi } \right] \\
& =\dfrac{\pi }{2}\left[ \left[ \sec x \right]_{0}^{\pi }-\left[ \tan x \right]_{0}^{\pi }+\left[ x \right]_{0}^{\pi } \right] \\
& =\dfrac{\pi }{2}\left[ \left( \sec \pi -\sec 0 \right)-\left( \tan \pi -\tan 0 \right)+\left( \pi -0 \right) \right] \\
\end{align}\]
\[\sec \pi =-1\] \[\tan \pi =0\]
\[\sec 0=+1\] \[\tan 0=0\]
\[\begin{align}
& =\dfrac{\pi }{2}\left[ \left[ -1-1 \right]+\pi \right] \\
& =\dfrac{\pi }{2}\left[ -2+\pi \right] \\
& =\dfrac{\pi \left( \pi -2 \right)}{2} \\
& \therefore I=\dfrac{\pi \left( \pi -2 \right)}{2} \\
\end{align}\]
Hence, by evaluating the integral, we get \[\dfrac{\pi \left( \pi -2 \right)}{2}\].
Note:- Be careful while simplifying the integral. Open brackets, don’t mix up the sign. Remember the basic identities and trigonometric formulae. You should learn the integral values of \[\tan x.\sec x,{{\sec }^{2}}x\] etc, which we have used in solving the integral. Finally substitute \[\left( \pi ,0 \right)\]and simplify the expression.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
How much time does it take to bleed after eating p class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

December 10th of 1948 is an important day in the history class 12 sst CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE

Give simple chemical tests to distinguish between the class 12 chemistry CBSE

