Answer
Verified
493.2k+ views
Hint: Solve the integral by replacing x by $\left( \pi -x \right)$as per $\int\limits_{0}^{a}{f\left( x \right)dx=}\int\limits_{0}^{a}{f\left( a-x \right)dx}$. Then simplify it using trigonometric identities. Finally, after integration substitute $\left( \pi ,0 \right)$in the place of x.
Complete step-by-step solution -
Given the integral, $\int\limits_{0}^{\pi }{\dfrac{x\sin x}{1+\sin x}dx}$.
Let’s put, $I=\int\limits_{0}^{\pi }{\dfrac{x\sin x}{1+\sin x}dx}$.
We know that, $\int\limits_{0}^{a}{f\left( x \right)dx=}\int\limits_{0}^{a}{f\left( a-x \right)dx}$.
Thus, x becomes $\left( \pi -x \right)$.
$\therefore I=\int\limits_{0}^{\pi }{\dfrac{\left( \pi -x \right)\sin x}{1+\sin \left( \pi -x \right)}dx}$
We know, \[\sin \left( 180-\theta \right)=\sin \theta \]
\[\sin \left( \pi -x \right)=\sin x\]
\[\begin{align}
& I=\int\limits_{0}^{\pi }{\dfrac{\left( \pi -x \right)\sin x}{1+\sin x}}=\int\limits_{0}^{\pi }{\left( \dfrac{\pi \sin x-x\sin x}{1+\sin x} \right)dx} \\
& I=\int\limits_{0}^{\pi }{\left( \dfrac{\pi \sin x}{1+\sin x}-\dfrac{x\sin x}{1+\sin x} \right)dx} \\
\end{align}\]
\[I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx}-\int\limits_{0}^{\pi }{\dfrac{x\sin x}{1+\sin x}dx}\]
\[I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx}-I\]
\[\begin{align}
& \Rightarrow I+I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx} \\
& 2I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx} \\
& \therefore I=\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x}{1+\sin x}dx} \\
\end{align}\]
Multiply numerator and denominator with \[\left( 1-\sin x \right)\].
\[\begin{align}
& I=\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x\left( 1-\sin x \right)}{\left( 1+\sin x \right)\left( 1-\sin x \right)}dx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x\left( 1-\sin x \right)}{1-{{\sin }^{2}}x}dx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x-{{\sin }^{2}}x}{1-{{\sin }^{2}}x}dx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x}{{{\cos }^{2}}x}dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{{{\sin }^{2}}x}{{{\cos }^{2}}x}dx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\tan x}{\cos x}dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{{{\tan }^{2}}xdx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\tan x.\sec x.dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{{{\tan }^{2}}x.dx} \\
\end{align}\]
We know, \[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\].
\[\begin{align}
& {{\sin }^{2}}x+{{\cos }^{2}}x=1 \\
& \therefore {{\cos }^{2}}x=1-{{\sin }^{2}}x \\
& \tan x=\dfrac{\sin x}{\cos x} \\
\end{align}\]
Which are basic, trigonometric formulae.
\[\because \dfrac{1}{\cos x}=\sec x\]
We know \[\int{\tan x.\sec x=\sec x}\]and \[\int{{{\sec }^{2}}x=\tan x}\].
Similarly, \[{{\tan }^{2}}x={{\sec }^{2}}x-1\].
\[\begin{align}
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\tan x.\sec x.dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\left( {{\sec }^{2}}-1 \right)dx} \\
& =\dfrac{\pi }{2}\left[ \sec x \right]_{0}^{\pi }-\dfrac{\pi }{2}\left[ \int\limits_{0}^{\pi }{{{\sec }^{2}}x}dx-\int\limits_{0}^{\pi }{1.dx} \right] \\
& =\dfrac{\pi }{2}\left[ \sec x \right]_{0}^{\pi }-\dfrac{\pi }{2}\left[ \left[ \tan x \right]_{0}^{\pi }-\left[ x \right]_{0}^{\pi } \right] \\
& =\dfrac{\pi }{2}\left[ \left[ \sec x \right]_{0}^{\pi }-\left[ \tan x \right]_{0}^{\pi }+\left[ x \right]_{0}^{\pi } \right] \\
& =\dfrac{\pi }{2}\left[ \left( \sec \pi -\sec 0 \right)-\left( \tan \pi -\tan 0 \right)+\left( \pi -0 \right) \right] \\
\end{align}\]
\[\sec \pi =-1\] \[\tan \pi =0\]
\[\sec 0=+1\] \[\tan 0=0\]
\[\begin{align}
& =\dfrac{\pi }{2}\left[ \left[ -1-1 \right]+\pi \right] \\
& =\dfrac{\pi }{2}\left[ -2+\pi \right] \\
& =\dfrac{\pi \left( \pi -2 \right)}{2} \\
& \therefore I=\dfrac{\pi \left( \pi -2 \right)}{2} \\
\end{align}\]
Hence, by evaluating the integral, we get \[\dfrac{\pi \left( \pi -2 \right)}{2}\].
Note:- Be careful while simplifying the integral. Open brackets, don’t mix up the sign. Remember the basic identities and trigonometric formulae. You should learn the integral values of \[\tan x.\sec x,{{\sec }^{2}}x\] etc, which we have used in solving the integral. Finally substitute \[\left( \pi ,0 \right)\]and simplify the expression.
Complete step-by-step solution -
Given the integral, $\int\limits_{0}^{\pi }{\dfrac{x\sin x}{1+\sin x}dx}$.
Let’s put, $I=\int\limits_{0}^{\pi }{\dfrac{x\sin x}{1+\sin x}dx}$.
We know that, $\int\limits_{0}^{a}{f\left( x \right)dx=}\int\limits_{0}^{a}{f\left( a-x \right)dx}$.
Thus, x becomes $\left( \pi -x \right)$.
$\therefore I=\int\limits_{0}^{\pi }{\dfrac{\left( \pi -x \right)\sin x}{1+\sin \left( \pi -x \right)}dx}$
We know, \[\sin \left( 180-\theta \right)=\sin \theta \]
\[\sin \left( \pi -x \right)=\sin x\]
\[\begin{align}
& I=\int\limits_{0}^{\pi }{\dfrac{\left( \pi -x \right)\sin x}{1+\sin x}}=\int\limits_{0}^{\pi }{\left( \dfrac{\pi \sin x-x\sin x}{1+\sin x} \right)dx} \\
& I=\int\limits_{0}^{\pi }{\left( \dfrac{\pi \sin x}{1+\sin x}-\dfrac{x\sin x}{1+\sin x} \right)dx} \\
\end{align}\]
\[I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx}-\int\limits_{0}^{\pi }{\dfrac{x\sin x}{1+\sin x}dx}\]
\[I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx}-I\]
\[\begin{align}
& \Rightarrow I+I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx} \\
& 2I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx} \\
& \therefore I=\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x}{1+\sin x}dx} \\
\end{align}\]
Multiply numerator and denominator with \[\left( 1-\sin x \right)\].
\[\begin{align}
& I=\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x\left( 1-\sin x \right)}{\left( 1+\sin x \right)\left( 1-\sin x \right)}dx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x\left( 1-\sin x \right)}{1-{{\sin }^{2}}x}dx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x-{{\sin }^{2}}x}{1-{{\sin }^{2}}x}dx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x}{{{\cos }^{2}}x}dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{{{\sin }^{2}}x}{{{\cos }^{2}}x}dx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\tan x}{\cos x}dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{{{\tan }^{2}}xdx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\tan x.\sec x.dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{{{\tan }^{2}}x.dx} \\
\end{align}\]
We know, \[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\].
\[\begin{align}
& {{\sin }^{2}}x+{{\cos }^{2}}x=1 \\
& \therefore {{\cos }^{2}}x=1-{{\sin }^{2}}x \\
& \tan x=\dfrac{\sin x}{\cos x} \\
\end{align}\]
Which are basic, trigonometric formulae.
\[\because \dfrac{1}{\cos x}=\sec x\]
We know \[\int{\tan x.\sec x=\sec x}\]and \[\int{{{\sec }^{2}}x=\tan x}\].
Similarly, \[{{\tan }^{2}}x={{\sec }^{2}}x-1\].
\[\begin{align}
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\tan x.\sec x.dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\left( {{\sec }^{2}}-1 \right)dx} \\
& =\dfrac{\pi }{2}\left[ \sec x \right]_{0}^{\pi }-\dfrac{\pi }{2}\left[ \int\limits_{0}^{\pi }{{{\sec }^{2}}x}dx-\int\limits_{0}^{\pi }{1.dx} \right] \\
& =\dfrac{\pi }{2}\left[ \sec x \right]_{0}^{\pi }-\dfrac{\pi }{2}\left[ \left[ \tan x \right]_{0}^{\pi }-\left[ x \right]_{0}^{\pi } \right] \\
& =\dfrac{\pi }{2}\left[ \left[ \sec x \right]_{0}^{\pi }-\left[ \tan x \right]_{0}^{\pi }+\left[ x \right]_{0}^{\pi } \right] \\
& =\dfrac{\pi }{2}\left[ \left( \sec \pi -\sec 0 \right)-\left( \tan \pi -\tan 0 \right)+\left( \pi -0 \right) \right] \\
\end{align}\]
\[\sec \pi =-1\] \[\tan \pi =0\]
\[\sec 0=+1\] \[\tan 0=0\]
\[\begin{align}
& =\dfrac{\pi }{2}\left[ \left[ -1-1 \right]+\pi \right] \\
& =\dfrac{\pi }{2}\left[ -2+\pi \right] \\
& =\dfrac{\pi \left( \pi -2 \right)}{2} \\
& \therefore I=\dfrac{\pi \left( \pi -2 \right)}{2} \\
\end{align}\]
Hence, by evaluating the integral, we get \[\dfrac{\pi \left( \pi -2 \right)}{2}\].
Note:- Be careful while simplifying the integral. Open brackets, don’t mix up the sign. Remember the basic identities and trigonometric formulae. You should learn the integral values of \[\tan x.\sec x,{{\sec }^{2}}x\] etc, which we have used in solving the integral. Finally substitute \[\left( \pi ,0 \right)\]and simplify the expression.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it