Evaluate the integral $\int\limits_{0}^{\pi }{\dfrac{x\sin x}{1+\sin x}dx}$.
Last updated date: 18th Mar 2023
•
Total views: 303.9k
•
Views today: 8.83k
Answer
303.9k+ views
Hint: Solve the integral by replacing x by $\left( \pi -x \right)$as per $\int\limits_{0}^{a}{f\left( x \right)dx=}\int\limits_{0}^{a}{f\left( a-x \right)dx}$. Then simplify it using trigonometric identities. Finally, after integration substitute $\left( \pi ,0 \right)$in the place of x.
Complete step-by-step solution -
Given the integral, $\int\limits_{0}^{\pi }{\dfrac{x\sin x}{1+\sin x}dx}$.
Let’s put, $I=\int\limits_{0}^{\pi }{\dfrac{x\sin x}{1+\sin x}dx}$.
We know that, $\int\limits_{0}^{a}{f\left( x \right)dx=}\int\limits_{0}^{a}{f\left( a-x \right)dx}$.
Thus, x becomes $\left( \pi -x \right)$.
$\therefore I=\int\limits_{0}^{\pi }{\dfrac{\left( \pi -x \right)\sin x}{1+\sin \left( \pi -x \right)}dx}$
We know, \[\sin \left( 180-\theta \right)=\sin \theta \]
\[\sin \left( \pi -x \right)=\sin x\]
\[\begin{align}
& I=\int\limits_{0}^{\pi }{\dfrac{\left( \pi -x \right)\sin x}{1+\sin x}}=\int\limits_{0}^{\pi }{\left( \dfrac{\pi \sin x-x\sin x}{1+\sin x} \right)dx} \\
& I=\int\limits_{0}^{\pi }{\left( \dfrac{\pi \sin x}{1+\sin x}-\dfrac{x\sin x}{1+\sin x} \right)dx} \\
\end{align}\]
\[I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx}-\int\limits_{0}^{\pi }{\dfrac{x\sin x}{1+\sin x}dx}\]
\[I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx}-I\]
\[\begin{align}
& \Rightarrow I+I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx} \\
& 2I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx} \\
& \therefore I=\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x}{1+\sin x}dx} \\
\end{align}\]
Multiply numerator and denominator with \[\left( 1-\sin x \right)\].
\[\begin{align}
& I=\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x\left( 1-\sin x \right)}{\left( 1+\sin x \right)\left( 1-\sin x \right)}dx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x\left( 1-\sin x \right)}{1-{{\sin }^{2}}x}dx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x-{{\sin }^{2}}x}{1-{{\sin }^{2}}x}dx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x}{{{\cos }^{2}}x}dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{{{\sin }^{2}}x}{{{\cos }^{2}}x}dx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\tan x}{\cos x}dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{{{\tan }^{2}}xdx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\tan x.\sec x.dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{{{\tan }^{2}}x.dx} \\
\end{align}\]
We know, \[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\].
\[\begin{align}
& {{\sin }^{2}}x+{{\cos }^{2}}x=1 \\
& \therefore {{\cos }^{2}}x=1-{{\sin }^{2}}x \\
& \tan x=\dfrac{\sin x}{\cos x} \\
\end{align}\]
Which are basic, trigonometric formulae.
\[\because \dfrac{1}{\cos x}=\sec x\]
We know \[\int{\tan x.\sec x=\sec x}\]and \[\int{{{\sec }^{2}}x=\tan x}\].
Similarly, \[{{\tan }^{2}}x={{\sec }^{2}}x-1\].
\[\begin{align}
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\tan x.\sec x.dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\left( {{\sec }^{2}}-1 \right)dx} \\
& =\dfrac{\pi }{2}\left[ \sec x \right]_{0}^{\pi }-\dfrac{\pi }{2}\left[ \int\limits_{0}^{\pi }{{{\sec }^{2}}x}dx-\int\limits_{0}^{\pi }{1.dx} \right] \\
& =\dfrac{\pi }{2}\left[ \sec x \right]_{0}^{\pi }-\dfrac{\pi }{2}\left[ \left[ \tan x \right]_{0}^{\pi }-\left[ x \right]_{0}^{\pi } \right] \\
& =\dfrac{\pi }{2}\left[ \left[ \sec x \right]_{0}^{\pi }-\left[ \tan x \right]_{0}^{\pi }+\left[ x \right]_{0}^{\pi } \right] \\
& =\dfrac{\pi }{2}\left[ \left( \sec \pi -\sec 0 \right)-\left( \tan \pi -\tan 0 \right)+\left( \pi -0 \right) \right] \\
\end{align}\]
\[\sec \pi =-1\] \[\tan \pi =0\]
\[\sec 0=+1\] \[\tan 0=0\]
\[\begin{align}
& =\dfrac{\pi }{2}\left[ \left[ -1-1 \right]+\pi \right] \\
& =\dfrac{\pi }{2}\left[ -2+\pi \right] \\
& =\dfrac{\pi \left( \pi -2 \right)}{2} \\
& \therefore I=\dfrac{\pi \left( \pi -2 \right)}{2} \\
\end{align}\]
Hence, by evaluating the integral, we get \[\dfrac{\pi \left( \pi -2 \right)}{2}\].
Note:- Be careful while simplifying the integral. Open brackets, don’t mix up the sign. Remember the basic identities and trigonometric formulae. You should learn the integral values of \[\tan x.\sec x,{{\sec }^{2}}x\] etc, which we have used in solving the integral. Finally substitute \[\left( \pi ,0 \right)\]and simplify the expression.
Complete step-by-step solution -
Given the integral, $\int\limits_{0}^{\pi }{\dfrac{x\sin x}{1+\sin x}dx}$.
Let’s put, $I=\int\limits_{0}^{\pi }{\dfrac{x\sin x}{1+\sin x}dx}$.
We know that, $\int\limits_{0}^{a}{f\left( x \right)dx=}\int\limits_{0}^{a}{f\left( a-x \right)dx}$.
Thus, x becomes $\left( \pi -x \right)$.
$\therefore I=\int\limits_{0}^{\pi }{\dfrac{\left( \pi -x \right)\sin x}{1+\sin \left( \pi -x \right)}dx}$
We know, \[\sin \left( 180-\theta \right)=\sin \theta \]
\[\sin \left( \pi -x \right)=\sin x\]
\[\begin{align}
& I=\int\limits_{0}^{\pi }{\dfrac{\left( \pi -x \right)\sin x}{1+\sin x}}=\int\limits_{0}^{\pi }{\left( \dfrac{\pi \sin x-x\sin x}{1+\sin x} \right)dx} \\
& I=\int\limits_{0}^{\pi }{\left( \dfrac{\pi \sin x}{1+\sin x}-\dfrac{x\sin x}{1+\sin x} \right)dx} \\
\end{align}\]
\[I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx}-\int\limits_{0}^{\pi }{\dfrac{x\sin x}{1+\sin x}dx}\]
\[I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx}-I\]
\[\begin{align}
& \Rightarrow I+I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx} \\
& 2I=\int\limits_{0}^{\pi }{\dfrac{\pi \sin x}{1+\sin x}dx} \\
& \therefore I=\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x}{1+\sin x}dx} \\
\end{align}\]
Multiply numerator and denominator with \[\left( 1-\sin x \right)\].
\[\begin{align}
& I=\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x\left( 1-\sin x \right)}{\left( 1+\sin x \right)\left( 1-\sin x \right)}dx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x\left( 1-\sin x \right)}{1-{{\sin }^{2}}x}dx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x-{{\sin }^{2}}x}{1-{{\sin }^{2}}x}dx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\sin x}{{{\cos }^{2}}x}dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{{{\sin }^{2}}x}{{{\cos }^{2}}x}dx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{\tan x}{\cos x}dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{{{\tan }^{2}}xdx} \\
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\tan x.\sec x.dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{{{\tan }^{2}}x.dx} \\
\end{align}\]
We know, \[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\].
\[\begin{align}
& {{\sin }^{2}}x+{{\cos }^{2}}x=1 \\
& \therefore {{\cos }^{2}}x=1-{{\sin }^{2}}x \\
& \tan x=\dfrac{\sin x}{\cos x} \\
\end{align}\]
Which are basic, trigonometric formulae.
\[\because \dfrac{1}{\cos x}=\sec x\]
We know \[\int{\tan x.\sec x=\sec x}\]and \[\int{{{\sec }^{2}}x=\tan x}\].
Similarly, \[{{\tan }^{2}}x={{\sec }^{2}}x-1\].
\[\begin{align}
& =\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\tan x.\sec x.dx}-\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\left( {{\sec }^{2}}-1 \right)dx} \\
& =\dfrac{\pi }{2}\left[ \sec x \right]_{0}^{\pi }-\dfrac{\pi }{2}\left[ \int\limits_{0}^{\pi }{{{\sec }^{2}}x}dx-\int\limits_{0}^{\pi }{1.dx} \right] \\
& =\dfrac{\pi }{2}\left[ \sec x \right]_{0}^{\pi }-\dfrac{\pi }{2}\left[ \left[ \tan x \right]_{0}^{\pi }-\left[ x \right]_{0}^{\pi } \right] \\
& =\dfrac{\pi }{2}\left[ \left[ \sec x \right]_{0}^{\pi }-\left[ \tan x \right]_{0}^{\pi }+\left[ x \right]_{0}^{\pi } \right] \\
& =\dfrac{\pi }{2}\left[ \left( \sec \pi -\sec 0 \right)-\left( \tan \pi -\tan 0 \right)+\left( \pi -0 \right) \right] \\
\end{align}\]
\[\sec \pi =-1\] \[\tan \pi =0\]
\[\sec 0=+1\] \[\tan 0=0\]
\[\begin{align}
& =\dfrac{\pi }{2}\left[ \left[ -1-1 \right]+\pi \right] \\
& =\dfrac{\pi }{2}\left[ -2+\pi \right] \\
& =\dfrac{\pi \left( \pi -2 \right)}{2} \\
& \therefore I=\dfrac{\pi \left( \pi -2 \right)}{2} \\
\end{align}\]
Hence, by evaluating the integral, we get \[\dfrac{\pi \left( \pi -2 \right)}{2}\].
Note:- Be careful while simplifying the integral. Open brackets, don’t mix up the sign. Remember the basic identities and trigonometric formulae. You should learn the integral values of \[\tan x.\sec x,{{\sec }^{2}}x\] etc, which we have used in solving the integral. Finally substitute \[\left( \pi ,0 \right)\]and simplify the expression.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
