
Evaluate the integral \[ \int_{0}^{1}{\dfrac{x{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}\text{ dx}\text{.}}\]
Answer
576.9k+ views
Hint: In this we find the integral \[\int_{0}^{1}{\dfrac{x{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}\text{ dx}}\] by using methods integration by substitution and integration by parts. In method integration by substitution, we reduce the given function to standard form by using some suitable substitution and the method of integration is used when the integrand can be expressed as a product of two suitable functions, one of which can be differentiable and the other can be integrated.
Complete step-by-step solution:
The following give the rule of integration by parts, if u and v are functions of x then,
$\int{u\cdot v\text{ d}x=u\cdot \int{v\text{ }}}dx-\int{\left[ \dfrac{du}{dx}\int{v}\text{ }dx \right]}dx.$
Where u and v are chosen by the rule of ‘ILATE’.
Let \[I=\int_{0}^{1}{\dfrac{x{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}\text{ dx}\text{.}}\text{ }...\text{(1)}\]
Now, we will use the method of integration by substitution to proceed further.
Substitute \[{{\sin }^{-1}}x=t\text{ }...\text{(2)}\]
Differentiating equation (2) with respect to x, we get
\[\Rightarrow \dfrac{1}{\sqrt{1-{{x}^{2}}}}=\dfrac{dt}{dx}\]
\[\Rightarrow \dfrac{1}{\sqrt{1-{{x}^{2}}}}\text{ }dx=dt\text{ }...\text{(3)}\]
Also by equation (2)
\[x=\sin t\text{ }...\text{(4)}\]
Again by equation (2), when$x=1\Rightarrow t={{\sin }^{-1}}1\Rightarrow t=\dfrac{\pi }{2}$.
When $x=0\Rightarrow t={{\sin }^{-1}}0\Rightarrow t=0$
By substituting equation (2), equation (3) and equation (4) in equation (1), we get
\[I=\int_{0}^{\dfrac{\pi }{2}}{t\sin t\text{ dt}}\text{ }...\text{(5)}\]
Now we will use integration by parts to solve equation (5),
By we will choose u and v by using rule ILATE,
Since, t is algebraic and sint is trigonometric function
$\Rightarrow u=t\text{ and }v=\sin t$
By integration by part we get,
\[I=\int_{0}^{\dfrac{\pi }{2}}{t\cdot \sin t\text{ }dt}=t\cdot \int_{0}^{\dfrac{\pi }{2}}{\sin t}\text{ }dt-\int\limits_{0}^{\dfrac{\pi }{2}}{\left[ \dfrac{dt}{dt}\int{\sin t}\text{ }dt \right]d}t.\]
Since $\int{\sin t\text{ }dt=-\cos t}+c\text{ and }\dfrac{dt}{dt}=1$
\[\Rightarrow I=\int_{0}^{\dfrac{\pi }{2}}{t\cdot \sin t\text{ }dt}=\left[ t\cdot \left( -\cos t \right) \right]_{0}^{\dfrac{\pi }{2}}-\int\limits_{0}^{\dfrac{\pi }{2}}{\left[ \text{(1) }\left( -\cos t \right) \right]d}t.\]
\[\Rightarrow I=\int_{0}^{\dfrac{\pi }{2}}{t\cdot \sin t\text{ }dt}=-\left[ t\cdot \cos t \right]_{0}^{\dfrac{\pi }{2}}+\int\limits_{0}^{\dfrac{\pi }{2}}{\cos t\text{ }d}t.\]
Since$\int{\text{cos }dt=\sin t}+c$
\[\begin{align}
& \Rightarrow I=\int_{0}^{\dfrac{\pi }{2}}{t\cdot \sin t\text{ }dt}=-\left[ t\cdot \cos t \right]_{0}^{\dfrac{\pi }{2}}+\left[ \sin t \right]_{0}^{\dfrac{\pi }{2}}. \\
& \\
\end{align}\]
\[\Rightarrow I=\int_{0}^{\dfrac{\pi }{2}}{t\cdot \sin t\text{ }dt}=\left( -\left[ \dfrac{\pi }{2}\cdot \cos \dfrac{\pi }{2} \right]+\left[ \sin \dfrac{\pi }{2} \right] \right)-\left( -\left[ 0\cdot \cos 0 \right]+\left[ \sin 0 \right] \right).\text{ }...\text{(6)}\]
Since, $\sin \dfrac{\pi }{2}=1,\text{ }\sin 0=0\text{, }\cos \dfrac{\pi }{2}=0\text{ and }\cos 0=1$
By substituting above sine and cosine function in equation (6), we get
\[\Rightarrow I=\int_{0}^{\dfrac{\pi }{2}}{t\cdot \sin t\text{ }dt}=\left( -\left[ \dfrac{\pi }{2}\cdot 0 \right]+\left[ 1 \right] \right)-\left( -\left[ 0\cdot 1 \right]+\left[ 0 \right] \right).\]
\[\Rightarrow I=\int_{0}^{\dfrac{\pi }{2}}{t\cdot \sin t\text{ }dt}=\left( 0+\left[ 1 \right] \right)-\left( -\left[ 0 \right]+\left[ 0 \right] \right)=1.\]
\[\Rightarrow I=\int_{0}^{\dfrac{\pi }{2}}{t\cdot \sin t\text{ }dt}=1.\]
\[\Rightarrow I=\int_{0}^{1}{\dfrac{x{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}\text{ dx=1}\text{.}}\text{ }\]
Note: In the method of integration by parts one should remember the following points:
1) When the integrand is a product of two functions out of which the second function has to be integrand (whose integration is known). Hence we should make the proper choice of the first function u and second function v.
2) We can choose the first function as the function which comes first in serial order of the letters of the “ILATE” where
L stands for logarithmic function,
I stands for inverse trigonometric function,
A stands for algebraic function,
T stands for trigonometric function,
E stands for the exponential function.
3) If the integrand contains a logarithmic function or inverse trigonometric function, take it as the first function. In all such cases, if the second function is not given, take it as 1.
Complete step-by-step solution:
The following give the rule of integration by parts, if u and v are functions of x then,
$\int{u\cdot v\text{ d}x=u\cdot \int{v\text{ }}}dx-\int{\left[ \dfrac{du}{dx}\int{v}\text{ }dx \right]}dx.$
Where u and v are chosen by the rule of ‘ILATE’.
Let \[I=\int_{0}^{1}{\dfrac{x{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}\text{ dx}\text{.}}\text{ }...\text{(1)}\]
Now, we will use the method of integration by substitution to proceed further.
Substitute \[{{\sin }^{-1}}x=t\text{ }...\text{(2)}\]
Differentiating equation (2) with respect to x, we get
\[\Rightarrow \dfrac{1}{\sqrt{1-{{x}^{2}}}}=\dfrac{dt}{dx}\]
\[\Rightarrow \dfrac{1}{\sqrt{1-{{x}^{2}}}}\text{ }dx=dt\text{ }...\text{(3)}\]
Also by equation (2)
\[x=\sin t\text{ }...\text{(4)}\]
Again by equation (2), when$x=1\Rightarrow t={{\sin }^{-1}}1\Rightarrow t=\dfrac{\pi }{2}$.
When $x=0\Rightarrow t={{\sin }^{-1}}0\Rightarrow t=0$
By substituting equation (2), equation (3) and equation (4) in equation (1), we get
\[I=\int_{0}^{\dfrac{\pi }{2}}{t\sin t\text{ dt}}\text{ }...\text{(5)}\]
Now we will use integration by parts to solve equation (5),
By we will choose u and v by using rule ILATE,
Since, t is algebraic and sint is trigonometric function
$\Rightarrow u=t\text{ and }v=\sin t$
By integration by part we get,
\[I=\int_{0}^{\dfrac{\pi }{2}}{t\cdot \sin t\text{ }dt}=t\cdot \int_{0}^{\dfrac{\pi }{2}}{\sin t}\text{ }dt-\int\limits_{0}^{\dfrac{\pi }{2}}{\left[ \dfrac{dt}{dt}\int{\sin t}\text{ }dt \right]d}t.\]
Since $\int{\sin t\text{ }dt=-\cos t}+c\text{ and }\dfrac{dt}{dt}=1$
\[\Rightarrow I=\int_{0}^{\dfrac{\pi }{2}}{t\cdot \sin t\text{ }dt}=\left[ t\cdot \left( -\cos t \right) \right]_{0}^{\dfrac{\pi }{2}}-\int\limits_{0}^{\dfrac{\pi }{2}}{\left[ \text{(1) }\left( -\cos t \right) \right]d}t.\]
\[\Rightarrow I=\int_{0}^{\dfrac{\pi }{2}}{t\cdot \sin t\text{ }dt}=-\left[ t\cdot \cos t \right]_{0}^{\dfrac{\pi }{2}}+\int\limits_{0}^{\dfrac{\pi }{2}}{\cos t\text{ }d}t.\]
Since$\int{\text{cos }dt=\sin t}+c$
\[\begin{align}
& \Rightarrow I=\int_{0}^{\dfrac{\pi }{2}}{t\cdot \sin t\text{ }dt}=-\left[ t\cdot \cos t \right]_{0}^{\dfrac{\pi }{2}}+\left[ \sin t \right]_{0}^{\dfrac{\pi }{2}}. \\
& \\
\end{align}\]
\[\Rightarrow I=\int_{0}^{\dfrac{\pi }{2}}{t\cdot \sin t\text{ }dt}=\left( -\left[ \dfrac{\pi }{2}\cdot \cos \dfrac{\pi }{2} \right]+\left[ \sin \dfrac{\pi }{2} \right] \right)-\left( -\left[ 0\cdot \cos 0 \right]+\left[ \sin 0 \right] \right).\text{ }...\text{(6)}\]
Since, $\sin \dfrac{\pi }{2}=1,\text{ }\sin 0=0\text{, }\cos \dfrac{\pi }{2}=0\text{ and }\cos 0=1$
By substituting above sine and cosine function in equation (6), we get
\[\Rightarrow I=\int_{0}^{\dfrac{\pi }{2}}{t\cdot \sin t\text{ }dt}=\left( -\left[ \dfrac{\pi }{2}\cdot 0 \right]+\left[ 1 \right] \right)-\left( -\left[ 0\cdot 1 \right]+\left[ 0 \right] \right).\]
\[\Rightarrow I=\int_{0}^{\dfrac{\pi }{2}}{t\cdot \sin t\text{ }dt}=\left( 0+\left[ 1 \right] \right)-\left( -\left[ 0 \right]+\left[ 0 \right] \right)=1.\]
\[\Rightarrow I=\int_{0}^{\dfrac{\pi }{2}}{t\cdot \sin t\text{ }dt}=1.\]
\[\Rightarrow I=\int_{0}^{1}{\dfrac{x{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}\text{ dx=1}\text{.}}\text{ }\]
Note: In the method of integration by parts one should remember the following points:
1) When the integrand is a product of two functions out of which the second function has to be integrand (whose integration is known). Hence we should make the proper choice of the first function u and second function v.
2) We can choose the first function as the function which comes first in serial order of the letters of the “ILATE” where
L stands for logarithmic function,
I stands for inverse trigonometric function,
A stands for algebraic function,
T stands for trigonometric function,
E stands for the exponential function.
3) If the integrand contains a logarithmic function or inverse trigonometric function, take it as the first function. In all such cases, if the second function is not given, take it as 1.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

