
Evaluate the following:
\[{\text{tan 3}}{{\text{5}}^ \circ }{\text{ tan 4}}{{\text{0}}^ \circ }{\text{ tan 4}}{{\text{5}}^ \circ }{\text{ tan 5}}{{\text{0}}^ \circ }{\text{ tan 5}}{{\text{5}}^ \circ }\]
Answer
612k+ views
Hint: Use the conversion of tangent to cotangent.
To evaluate,
\[{\text{tan 3}}{{\text{5}}^ \circ }{\text{ tan 4}}{{\text{0}}^ \circ }{\text{ tan 4}}{{\text{5}}^ \circ }{\text{ tan 5}}{{\text{0}}^ \circ }{\text{ tan 5}}{{\text{5}}^ \circ }\]
We know that in trigonometry,
$\tan (90 - \theta ) = \cot \theta $
and $\cot \theta = \dfrac{1}{{\tan \theta }}$
So by using this identity we will get,
\[
tan{35^ \circ } = tan({90^ \circ } - {55^ \circ }) = cot{55^ \circ } \\
tan{40^ \circ } = tan({90^ \circ } - {50^ \circ }) = cot{50^ \circ } \\
\]
Now if we substitute these values in our original question we get,
\[
= cot{55^ \circ }cot{50^ \circ }tan{45^ \circ }tan{50^ \circ }tan{55^ \circ } \\
= \dfrac{1}{{tan{{55}^ \circ }}} \times \dfrac{1}{{tan{{50}^ \circ }}} \times tan{45^ \circ } \times tan{50^ \circ } \times tan{55^ \circ } \\
\]
On solving it we get,
$\tan {45^ \circ }$ = $1$
Hence, the answer is $1$
Note: In these types of problems, the conversion from one trigonometric quantity to another is crucial. Also, it's helpful to remember the trigonometric values.
To evaluate,
\[{\text{tan 3}}{{\text{5}}^ \circ }{\text{ tan 4}}{{\text{0}}^ \circ }{\text{ tan 4}}{{\text{5}}^ \circ }{\text{ tan 5}}{{\text{0}}^ \circ }{\text{ tan 5}}{{\text{5}}^ \circ }\]
We know that in trigonometry,
$\tan (90 - \theta ) = \cot \theta $
and $\cot \theta = \dfrac{1}{{\tan \theta }}$
So by using this identity we will get,
\[
tan{35^ \circ } = tan({90^ \circ } - {55^ \circ }) = cot{55^ \circ } \\
tan{40^ \circ } = tan({90^ \circ } - {50^ \circ }) = cot{50^ \circ } \\
\]
Now if we substitute these values in our original question we get,
\[
= cot{55^ \circ }cot{50^ \circ }tan{45^ \circ }tan{50^ \circ }tan{55^ \circ } \\
= \dfrac{1}{{tan{{55}^ \circ }}} \times \dfrac{1}{{tan{{50}^ \circ }}} \times tan{45^ \circ } \times tan{50^ \circ } \times tan{55^ \circ } \\
\]
On solving it we get,
$\tan {45^ \circ }$ = $1$
Hence, the answer is $1$
Note: In these types of problems, the conversion from one trigonometric quantity to another is crucial. Also, it's helpful to remember the trigonometric values.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

