Evaluate the following:
\[{\text{tan 3}}{{\text{5}}^ \circ }{\text{ tan 4}}{{\text{0}}^ \circ }{\text{ tan 4}}{{\text{5}}^ \circ }{\text{ tan 5}}{{\text{0}}^ \circ }{\text{ tan 5}}{{\text{5}}^ \circ }\]
Answer
366k+ views
Hint: Use the conversion of tangent to cotangent.
To evaluate,
\[{\text{tan 3}}{{\text{5}}^ \circ }{\text{ tan 4}}{{\text{0}}^ \circ }{\text{ tan 4}}{{\text{5}}^ \circ }{\text{ tan 5}}{{\text{0}}^ \circ }{\text{ tan 5}}{{\text{5}}^ \circ }\]
We know that in trigonometry,
$\tan (90 - \theta ) = \cot \theta $
and $\cot \theta = \dfrac{1}{{\tan \theta }}$
So by using this identity we will get,
\[
tan{35^ \circ } = tan({90^ \circ } - {55^ \circ }) = cot{55^ \circ } \\
tan{40^ \circ } = tan({90^ \circ } - {50^ \circ }) = cot{50^ \circ } \\
\]
Now if we substitute these values in our original question we get,
\[
= cot{55^ \circ }cot{50^ \circ }tan{45^ \circ }tan{50^ \circ }tan{55^ \circ } \\
= \dfrac{1}{{tan{{55}^ \circ }}} \times \dfrac{1}{{tan{{50}^ \circ }}} \times tan{45^ \circ } \times tan{50^ \circ } \times tan{55^ \circ } \\
\]
On solving it we get,
$\tan {45^ \circ }$ = $1$
Hence, the answer is $1$
Note: In these types of problems, the conversion from one trigonometric quantity to another is crucial. Also, it's helpful to remember the trigonometric values.
To evaluate,
\[{\text{tan 3}}{{\text{5}}^ \circ }{\text{ tan 4}}{{\text{0}}^ \circ }{\text{ tan 4}}{{\text{5}}^ \circ }{\text{ tan 5}}{{\text{0}}^ \circ }{\text{ tan 5}}{{\text{5}}^ \circ }\]
We know that in trigonometry,
$\tan (90 - \theta ) = \cot \theta $
and $\cot \theta = \dfrac{1}{{\tan \theta }}$
So by using this identity we will get,
\[
tan{35^ \circ } = tan({90^ \circ } - {55^ \circ }) = cot{55^ \circ } \\
tan{40^ \circ } = tan({90^ \circ } - {50^ \circ }) = cot{50^ \circ } \\
\]
Now if we substitute these values in our original question we get,
\[
= cot{55^ \circ }cot{50^ \circ }tan{45^ \circ }tan{50^ \circ }tan{55^ \circ } \\
= \dfrac{1}{{tan{{55}^ \circ }}} \times \dfrac{1}{{tan{{50}^ \circ }}} \times tan{45^ \circ } \times tan{50^ \circ } \times tan{55^ \circ } \\
\]
On solving it we get,
$\tan {45^ \circ }$ = $1$
Hence, the answer is $1$
Note: In these types of problems, the conversion from one trigonometric quantity to another is crucial. Also, it's helpful to remember the trigonometric values.
Last updated date: 01st Oct 2023
•
Total views: 366k
•
Views today: 8.66k
Recently Updated Pages
What do you mean by public facilities

Paragraph on Friendship

Slogan on Noise Pollution

Disadvantages of Advertising

Prepare a Pocket Guide on First Aid for your School

10 Slogans on Save the Tiger

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is meant by shramdaan AVoluntary contribution class 11 social science CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

An alternating current can be produced by A a transformer class 12 physics CBSE

What is the value of 01+23+45+67++1617+1819+20 class 11 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers
