
Evaluate the following:
\[{\text{tan 3}}{{\text{5}}^ \circ }{\text{ tan 4}}{{\text{0}}^ \circ }{\text{ tan 4}}{{\text{5}}^ \circ }{\text{ tan 5}}{{\text{0}}^ \circ }{\text{ tan 5}}{{\text{5}}^ \circ }\]
Answer
604.5k+ views
Hint: Use the conversion of tangent to cotangent.
To evaluate,
\[{\text{tan 3}}{{\text{5}}^ \circ }{\text{ tan 4}}{{\text{0}}^ \circ }{\text{ tan 4}}{{\text{5}}^ \circ }{\text{ tan 5}}{{\text{0}}^ \circ }{\text{ tan 5}}{{\text{5}}^ \circ }\]
We know that in trigonometry,
$\tan (90 - \theta ) = \cot \theta $
and $\cot \theta = \dfrac{1}{{\tan \theta }}$
So by using this identity we will get,
\[
tan{35^ \circ } = tan({90^ \circ } - {55^ \circ }) = cot{55^ \circ } \\
tan{40^ \circ } = tan({90^ \circ } - {50^ \circ }) = cot{50^ \circ } \\
\]
Now if we substitute these values in our original question we get,
\[
= cot{55^ \circ }cot{50^ \circ }tan{45^ \circ }tan{50^ \circ }tan{55^ \circ } \\
= \dfrac{1}{{tan{{55}^ \circ }}} \times \dfrac{1}{{tan{{50}^ \circ }}} \times tan{45^ \circ } \times tan{50^ \circ } \times tan{55^ \circ } \\
\]
On solving it we get,
$\tan {45^ \circ }$ = $1$
Hence, the answer is $1$
Note: In these types of problems, the conversion from one trigonometric quantity to another is crucial. Also, it's helpful to remember the trigonometric values.
To evaluate,
\[{\text{tan 3}}{{\text{5}}^ \circ }{\text{ tan 4}}{{\text{0}}^ \circ }{\text{ tan 4}}{{\text{5}}^ \circ }{\text{ tan 5}}{{\text{0}}^ \circ }{\text{ tan 5}}{{\text{5}}^ \circ }\]
We know that in trigonometry,
$\tan (90 - \theta ) = \cot \theta $
and $\cot \theta = \dfrac{1}{{\tan \theta }}$
So by using this identity we will get,
\[
tan{35^ \circ } = tan({90^ \circ } - {55^ \circ }) = cot{55^ \circ } \\
tan{40^ \circ } = tan({90^ \circ } - {50^ \circ }) = cot{50^ \circ } \\
\]
Now if we substitute these values in our original question we get,
\[
= cot{55^ \circ }cot{50^ \circ }tan{45^ \circ }tan{50^ \circ }tan{55^ \circ } \\
= \dfrac{1}{{tan{{55}^ \circ }}} \times \dfrac{1}{{tan{{50}^ \circ }}} \times tan{45^ \circ } \times tan{50^ \circ } \times tan{55^ \circ } \\
\]
On solving it we get,
$\tan {45^ \circ }$ = $1$
Hence, the answer is $1$
Note: In these types of problems, the conversion from one trigonometric quantity to another is crucial. Also, it's helpful to remember the trigonometric values.
Recently Updated Pages
Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Class 10 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

How many members did the Constituent Assembly of India class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

The Constitution of India was adopted on A 26 November class 10 social science CBSE

