Answer
Verified
477.9k+ views
Hint: Transform the whole equation in terms of \[\sin \theta \]and \[\cos \theta \].
We have to evaluate: \[\sec {{50}^{o}}\sin {{40}^{o}}+\cos {{40}^{o}}\text{cosec}{{50}^{o}}...\left( i \right)\]
We know that \[\sin \theta =\dfrac{1}{\text{cosec}\theta }\]and \[\cos \theta =\dfrac{1}{\text{sec}\theta
}\].
Therefore, \[\sec {{50}^{o}}=\dfrac{1}{\cos {{50}^{o}}}\]and
\[\operatorname{cosec}{{50}^{o}}=\dfrac{1}{\sin {{50}^{o}}}\]
Now, we will put these values in equation \[\left( i \right)\].
\[=\sec {{50}^{o}}\sin {{40}^{o}}+\cos {{40}^{o}}\operatorname{cosec}{{50}^{o}}\]
We get, \[\dfrac{\sin {{40}^{o}}}{\cos {{50}^{o}}}+\dfrac{\cos {{40}^{o}}}{\sin {{50}^{o}}}....\left( ii \right)\]
Now, we know that \[\sin \left( {{90}^{o}}-\theta \right)=\cos \theta \]
For \[\theta ={{50}^{o}}\]
We get \[\sin \left( 90-{{50}^{o}} \right)=\cos {{50}^{o}}\]
\[\Rightarrow \sin {{40}^{o}}=\cos {{50}^{o}}\]
For \[\theta ={{40}^{o}}\]
We get \[\sin \left( 90-{{40}^{o}} \right)=\cos {{40}^{o}}\]
\[\Rightarrow \sin {{50}^{o}}=\cos {{40}^{o}}\]
Putting the values of \[\sin {{40}^{o}}\]and \[\cos {{50}^{o}}\]in equation \[\left( ii \right)\].
We get, \[\dfrac{\cos {{50}^{o}}}{\cos {{50}^{o}}}+\dfrac{\cos {{40}^{o}}}{\cos {{40}^{o}}}\]
By cancelling the terms, we get
\[=1+1\]
\[=2\]
Hence, we get \[\sec {{50}^{o}}\sin {{40}^{o}}+\cos {{40}^{o}}\text{cosec}{{50}^{o}}=2\].
Note: This question can also be easily solved by converting \[\sec \left( 90-\theta \right)\]to
\[\operatorname{cosec}\theta \]and \[\operatorname{cosec}\left( 90-\theta \right)\]to\[\sec \theta \]as follows:
\[\sec {{50}^{o}}\sin {{40}^{o}}+\cos {{40}^{o}}\text{cosec}{{50}^{o}}....\left( i \right)\]
We know that \[\sec \left( {{90}^{o}}-\theta \right)=\operatorname{cosec}\theta \]
For \[\theta ={{40}^{o}}\], we get \[\sec \left( {{90}^{o}}-{{40}^{o}}
\right)=\operatorname{cosec}{{40}^{o}}\]
Therefore, \[\sec {{50}^{o}}=\operatorname{cosec}{{40}^{o}}\]
Also, we know that \[\operatorname{cosec}\left( {{90}^{o}}-\theta \right)=\sec \theta \]
For \[\theta ={{40}^{o}}\], we get \[\operatorname{cosec}\left( {{90}^{o}}-{{40}^{o}}
\right)=sec{{40}^{o}}\]
Therefore, \[\operatorname{cosec}{{50}^{o}}=sec{{40}^{o}}\]
Now, we put values of \[\sec \left( {{50}^{o}} \right)\]and \[\operatorname{cosec}\left( {{50}^{o}}
\right)\]in equation \[\left( i \right)\].
We get, \[\operatorname{cosec}{{40}^{o}}\sin {{40}^{o}}+\cos {{40}^{o}}\sec {{40}^{o}}\]
We know that \[\operatorname{cosec}\theta .\sin \theta =1\]and \[\cos \theta .\sec \theta =1\]
By putting it in above equation,
We get, \[1+1=2\]which is our required answer.
We have to evaluate: \[\sec {{50}^{o}}\sin {{40}^{o}}+\cos {{40}^{o}}\text{cosec}{{50}^{o}}...\left( i \right)\]
We know that \[\sin \theta =\dfrac{1}{\text{cosec}\theta }\]and \[\cos \theta =\dfrac{1}{\text{sec}\theta
}\].
Therefore, \[\sec {{50}^{o}}=\dfrac{1}{\cos {{50}^{o}}}\]and
\[\operatorname{cosec}{{50}^{o}}=\dfrac{1}{\sin {{50}^{o}}}\]
Now, we will put these values in equation \[\left( i \right)\].
\[=\sec {{50}^{o}}\sin {{40}^{o}}+\cos {{40}^{o}}\operatorname{cosec}{{50}^{o}}\]
We get, \[\dfrac{\sin {{40}^{o}}}{\cos {{50}^{o}}}+\dfrac{\cos {{40}^{o}}}{\sin {{50}^{o}}}....\left( ii \right)\]
Now, we know that \[\sin \left( {{90}^{o}}-\theta \right)=\cos \theta \]
For \[\theta ={{50}^{o}}\]
We get \[\sin \left( 90-{{50}^{o}} \right)=\cos {{50}^{o}}\]
\[\Rightarrow \sin {{40}^{o}}=\cos {{50}^{o}}\]
For \[\theta ={{40}^{o}}\]
We get \[\sin \left( 90-{{40}^{o}} \right)=\cos {{40}^{o}}\]
\[\Rightarrow \sin {{50}^{o}}=\cos {{40}^{o}}\]
Putting the values of \[\sin {{40}^{o}}\]and \[\cos {{50}^{o}}\]in equation \[\left( ii \right)\].
We get, \[\dfrac{\cos {{50}^{o}}}{\cos {{50}^{o}}}+\dfrac{\cos {{40}^{o}}}{\cos {{40}^{o}}}\]
By cancelling the terms, we get
\[=1+1\]
\[=2\]
Hence, we get \[\sec {{50}^{o}}\sin {{40}^{o}}+\cos {{40}^{o}}\text{cosec}{{50}^{o}}=2\].
Note: This question can also be easily solved by converting \[\sec \left( 90-\theta \right)\]to
\[\operatorname{cosec}\theta \]and \[\operatorname{cosec}\left( 90-\theta \right)\]to\[\sec \theta \]as follows:
\[\sec {{50}^{o}}\sin {{40}^{o}}+\cos {{40}^{o}}\text{cosec}{{50}^{o}}....\left( i \right)\]
We know that \[\sec \left( {{90}^{o}}-\theta \right)=\operatorname{cosec}\theta \]
For \[\theta ={{40}^{o}}\], we get \[\sec \left( {{90}^{o}}-{{40}^{o}}
\right)=\operatorname{cosec}{{40}^{o}}\]
Therefore, \[\sec {{50}^{o}}=\operatorname{cosec}{{40}^{o}}\]
Also, we know that \[\operatorname{cosec}\left( {{90}^{o}}-\theta \right)=\sec \theta \]
For \[\theta ={{40}^{o}}\], we get \[\operatorname{cosec}\left( {{90}^{o}}-{{40}^{o}}
\right)=sec{{40}^{o}}\]
Therefore, \[\operatorname{cosec}{{50}^{o}}=sec{{40}^{o}}\]
Now, we put values of \[\sec \left( {{50}^{o}} \right)\]and \[\operatorname{cosec}\left( {{50}^{o}}
\right)\]in equation \[\left( i \right)\].
We get, \[\operatorname{cosec}{{40}^{o}}\sin {{40}^{o}}+\cos {{40}^{o}}\sec {{40}^{o}}\]
We know that \[\operatorname{cosec}\theta .\sin \theta =1\]and \[\cos \theta .\sec \theta =1\]
By putting it in above equation,
We get, \[1+1=2\]which is our required answer.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE