
Evaluate the following: \[\sec {{50}^{o}}\sin {{40}^{o}}+\cos {{40}^{o}}\text{cosec}{{50}^{o}}\].
Answer
609k+ views
Hint: Transform the whole equation in terms of \[\sin \theta \]and \[\cos \theta \].
We have to evaluate: \[\sec {{50}^{o}}\sin {{40}^{o}}+\cos {{40}^{o}}\text{cosec}{{50}^{o}}...\left( i \right)\]
We know that \[\sin \theta =\dfrac{1}{\text{cosec}\theta }\]and \[\cos \theta =\dfrac{1}{\text{sec}\theta
}\].
Therefore, \[\sec {{50}^{o}}=\dfrac{1}{\cos {{50}^{o}}}\]and
\[\operatorname{cosec}{{50}^{o}}=\dfrac{1}{\sin {{50}^{o}}}\]
Now, we will put these values in equation \[\left( i \right)\].
\[=\sec {{50}^{o}}\sin {{40}^{o}}+\cos {{40}^{o}}\operatorname{cosec}{{50}^{o}}\]
We get, \[\dfrac{\sin {{40}^{o}}}{\cos {{50}^{o}}}+\dfrac{\cos {{40}^{o}}}{\sin {{50}^{o}}}....\left( ii \right)\]
Now, we know that \[\sin \left( {{90}^{o}}-\theta \right)=\cos \theta \]
For \[\theta ={{50}^{o}}\]
We get \[\sin \left( 90-{{50}^{o}} \right)=\cos {{50}^{o}}\]
\[\Rightarrow \sin {{40}^{o}}=\cos {{50}^{o}}\]
For \[\theta ={{40}^{o}}\]
We get \[\sin \left( 90-{{40}^{o}} \right)=\cos {{40}^{o}}\]
\[\Rightarrow \sin {{50}^{o}}=\cos {{40}^{o}}\]
Putting the values of \[\sin {{40}^{o}}\]and \[\cos {{50}^{o}}\]in equation \[\left( ii \right)\].
We get, \[\dfrac{\cos {{50}^{o}}}{\cos {{50}^{o}}}+\dfrac{\cos {{40}^{o}}}{\cos {{40}^{o}}}\]
By cancelling the terms, we get
\[=1+1\]
\[=2\]
Hence, we get \[\sec {{50}^{o}}\sin {{40}^{o}}+\cos {{40}^{o}}\text{cosec}{{50}^{o}}=2\].
Note: This question can also be easily solved by converting \[\sec \left( 90-\theta \right)\]to
\[\operatorname{cosec}\theta \]and \[\operatorname{cosec}\left( 90-\theta \right)\]to\[\sec \theta \]as follows:
\[\sec {{50}^{o}}\sin {{40}^{o}}+\cos {{40}^{o}}\text{cosec}{{50}^{o}}....\left( i \right)\]
We know that \[\sec \left( {{90}^{o}}-\theta \right)=\operatorname{cosec}\theta \]
For \[\theta ={{40}^{o}}\], we get \[\sec \left( {{90}^{o}}-{{40}^{o}}
\right)=\operatorname{cosec}{{40}^{o}}\]
Therefore, \[\sec {{50}^{o}}=\operatorname{cosec}{{40}^{o}}\]
Also, we know that \[\operatorname{cosec}\left( {{90}^{o}}-\theta \right)=\sec \theta \]
For \[\theta ={{40}^{o}}\], we get \[\operatorname{cosec}\left( {{90}^{o}}-{{40}^{o}}
\right)=sec{{40}^{o}}\]
Therefore, \[\operatorname{cosec}{{50}^{o}}=sec{{40}^{o}}\]
Now, we put values of \[\sec \left( {{50}^{o}} \right)\]and \[\operatorname{cosec}\left( {{50}^{o}}
\right)\]in equation \[\left( i \right)\].
We get, \[\operatorname{cosec}{{40}^{o}}\sin {{40}^{o}}+\cos {{40}^{o}}\sec {{40}^{o}}\]
We know that \[\operatorname{cosec}\theta .\sin \theta =1\]and \[\cos \theta .\sec \theta =1\]
By putting it in above equation,
We get, \[1+1=2\]which is our required answer.
We have to evaluate: \[\sec {{50}^{o}}\sin {{40}^{o}}+\cos {{40}^{o}}\text{cosec}{{50}^{o}}...\left( i \right)\]
We know that \[\sin \theta =\dfrac{1}{\text{cosec}\theta }\]and \[\cos \theta =\dfrac{1}{\text{sec}\theta
}\].
Therefore, \[\sec {{50}^{o}}=\dfrac{1}{\cos {{50}^{o}}}\]and
\[\operatorname{cosec}{{50}^{o}}=\dfrac{1}{\sin {{50}^{o}}}\]
Now, we will put these values in equation \[\left( i \right)\].
\[=\sec {{50}^{o}}\sin {{40}^{o}}+\cos {{40}^{o}}\operatorname{cosec}{{50}^{o}}\]
We get, \[\dfrac{\sin {{40}^{o}}}{\cos {{50}^{o}}}+\dfrac{\cos {{40}^{o}}}{\sin {{50}^{o}}}....\left( ii \right)\]
Now, we know that \[\sin \left( {{90}^{o}}-\theta \right)=\cos \theta \]
For \[\theta ={{50}^{o}}\]
We get \[\sin \left( 90-{{50}^{o}} \right)=\cos {{50}^{o}}\]
\[\Rightarrow \sin {{40}^{o}}=\cos {{50}^{o}}\]
For \[\theta ={{40}^{o}}\]
We get \[\sin \left( 90-{{40}^{o}} \right)=\cos {{40}^{o}}\]
\[\Rightarrow \sin {{50}^{o}}=\cos {{40}^{o}}\]
Putting the values of \[\sin {{40}^{o}}\]and \[\cos {{50}^{o}}\]in equation \[\left( ii \right)\].
We get, \[\dfrac{\cos {{50}^{o}}}{\cos {{50}^{o}}}+\dfrac{\cos {{40}^{o}}}{\cos {{40}^{o}}}\]
By cancelling the terms, we get
\[=1+1\]
\[=2\]
Hence, we get \[\sec {{50}^{o}}\sin {{40}^{o}}+\cos {{40}^{o}}\text{cosec}{{50}^{o}}=2\].
Note: This question can also be easily solved by converting \[\sec \left( 90-\theta \right)\]to
\[\operatorname{cosec}\theta \]and \[\operatorname{cosec}\left( 90-\theta \right)\]to\[\sec \theta \]as follows:
\[\sec {{50}^{o}}\sin {{40}^{o}}+\cos {{40}^{o}}\text{cosec}{{50}^{o}}....\left( i \right)\]
We know that \[\sec \left( {{90}^{o}}-\theta \right)=\operatorname{cosec}\theta \]
For \[\theta ={{40}^{o}}\], we get \[\sec \left( {{90}^{o}}-{{40}^{o}}
\right)=\operatorname{cosec}{{40}^{o}}\]
Therefore, \[\sec {{50}^{o}}=\operatorname{cosec}{{40}^{o}}\]
Also, we know that \[\operatorname{cosec}\left( {{90}^{o}}-\theta \right)=\sec \theta \]
For \[\theta ={{40}^{o}}\], we get \[\operatorname{cosec}\left( {{90}^{o}}-{{40}^{o}}
\right)=sec{{40}^{o}}\]
Therefore, \[\operatorname{cosec}{{50}^{o}}=sec{{40}^{o}}\]
Now, we put values of \[\sec \left( {{50}^{o}} \right)\]and \[\operatorname{cosec}\left( {{50}^{o}}
\right)\]in equation \[\left( i \right)\].
We get, \[\operatorname{cosec}{{40}^{o}}\sin {{40}^{o}}+\cos {{40}^{o}}\sec {{40}^{o}}\]
We know that \[\operatorname{cosec}\theta .\sin \theta =1\]and \[\cos \theta .\sec \theta =1\]
By putting it in above equation,
We get, \[1+1=2\]which is our required answer.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

