Evaluate the following limit: $\displaystyle \lim_{x \to 0}\left( x\csc x \right)$
Answer
279.9k+ views
Hint: To solve this question we need to have the knowledge of limits. To solve the problem where the function given is $x\csc x$, we will first convert the trigonometric function$\csc x$ in terms of $\sin x$ and then we will be applying the value of the limit which is given to us as $x$ tends to zero.
Complete step by step answer:
The question asks us to find the value of the function$\displaystyle \lim_{x \to 0}\left( x\csc x \right)$. We are given with a function which is a product of the algebraic function $x$ and the trigonometric function$\csc x$. The first step is to change the trigonometric function $\csc x$ into the terms of $\sin x$. So as you know, the trigonometric function $\csc x$ is the reciprocal of the trigonometric function $\sin x$. Mathematically it will be written as:
$\Rightarrow \csc x=\dfrac{1}{\sin x}$
$\Rightarrow x\csc x=x\dfrac{1}{\sin x}$
$\Rightarrow x\csc x=\dfrac{x}{\sin x}$
Now to find the value of $\displaystyle \lim_{x \to 0}\left( x\csc x \right)$which has become as $\displaystyle \lim_{x \to 0}\left( \dfrac{x}{\sin x} \right)$ we will divide both the numerator and the denominator of the function by $x$ , on doing this we get:
$\Rightarrow \displaystyle \lim_{x \to 0}\left( \dfrac{\dfrac{x}{x}}{\dfrac{\sin x}{x}} \right)$
On checking the numerator of the function we see that it cancels to give the result as $1$ as $\dfrac{x}{x}$ is $1$. Now on applying the limit to the function $\dfrac{\sin x}{x}$. As we know that $\displaystyle \lim_{x \to 0}\left( \dfrac{\sin x}{x} \right)=0$, so applying this in the above expression we get:
$\Rightarrow \displaystyle \lim_{x \to 0}\left( \dfrac{1}{\dfrac{\sin x}{x}} \right)$
$\Rightarrow \dfrac{1}{1}$
Since any fraction having denominator as $1$, then the numerator of the fraction changes to an integer. So on doing this we get:
$\Rightarrow 1$
$\therefore $ The value of $\displaystyle \lim_{x \to 0}\left( x\csc x \right)$ is $1$.
Note: To solve the problem like this we need to first solve the function and then need to substitute the value of the limit to the function. When the fraction has a denominator as $1$, then the numerator of the fraction changes to an integer.
Complete step by step answer:
The question asks us to find the value of the function$\displaystyle \lim_{x \to 0}\left( x\csc x \right)$. We are given with a function which is a product of the algebraic function $x$ and the trigonometric function$\csc x$. The first step is to change the trigonometric function $\csc x$ into the terms of $\sin x$. So as you know, the trigonometric function $\csc x$ is the reciprocal of the trigonometric function $\sin x$. Mathematically it will be written as:
$\Rightarrow \csc x=\dfrac{1}{\sin x}$
$\Rightarrow x\csc x=x\dfrac{1}{\sin x}$
$\Rightarrow x\csc x=\dfrac{x}{\sin x}$
Now to find the value of $\displaystyle \lim_{x \to 0}\left( x\csc x \right)$which has become as $\displaystyle \lim_{x \to 0}\left( \dfrac{x}{\sin x} \right)$ we will divide both the numerator and the denominator of the function by $x$ , on doing this we get:
$\Rightarrow \displaystyle \lim_{x \to 0}\left( \dfrac{\dfrac{x}{x}}{\dfrac{\sin x}{x}} \right)$
On checking the numerator of the function we see that it cancels to give the result as $1$ as $\dfrac{x}{x}$ is $1$. Now on applying the limit to the function $\dfrac{\sin x}{x}$. As we know that $\displaystyle \lim_{x \to 0}\left( \dfrac{\sin x}{x} \right)=0$, so applying this in the above expression we get:
$\Rightarrow \displaystyle \lim_{x \to 0}\left( \dfrac{1}{\dfrac{\sin x}{x}} \right)$
$\Rightarrow \dfrac{1}{1}$
Since any fraction having denominator as $1$, then the numerator of the fraction changes to an integer. So on doing this we get:
$\Rightarrow 1$
$\therefore $ The value of $\displaystyle \lim_{x \to 0}\left( x\csc x \right)$ is $1$.
Note: To solve the problem like this we need to first solve the function and then need to substitute the value of the limit to the function. When the fraction has a denominator as $1$, then the numerator of the fraction changes to an integer.
Recently Updated Pages
Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

Give 10 examples for herbs , shrubs , climbers , creepers

Which state has the longest coastline in India A Tamil class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE
