Evaluate the following limit: $\displaystyle \lim_{x \to 0}\left( x\csc x \right)$
Answer
Verified
402.3k+ views
Hint: To solve this question we need to have the knowledge of limits. To solve the problem where the function given is $x\csc x$, we will first convert the trigonometric function$\csc x$ in terms of $\sin x$ and then we will be applying the value of the limit which is given to us as $x$ tends to zero.
Complete step by step answer:
The question asks us to find the value of the function$\displaystyle \lim_{x \to 0}\left( x\csc x \right)$. We are given with a function which is a product of the algebraic function $x$ and the trigonometric function$\csc x$. The first step is to change the trigonometric function $\csc x$ into the terms of $\sin x$. So as you know, the trigonometric function $\csc x$ is the reciprocal of the trigonometric function $\sin x$. Mathematically it will be written as:
$\Rightarrow \csc x=\dfrac{1}{\sin x}$
$\Rightarrow x\csc x=x\dfrac{1}{\sin x}$
$\Rightarrow x\csc x=\dfrac{x}{\sin x}$
Now to find the value of $\displaystyle \lim_{x \to 0}\left( x\csc x \right)$which has become as $\displaystyle \lim_{x \to 0}\left( \dfrac{x}{\sin x} \right)$ we will divide both the numerator and the denominator of the function by $x$ , on doing this we get:
$\Rightarrow \displaystyle \lim_{x \to 0}\left( \dfrac{\dfrac{x}{x}}{\dfrac{\sin x}{x}} \right)$
On checking the numerator of the function we see that it cancels to give the result as $1$ as $\dfrac{x}{x}$ is $1$. Now on applying the limit to the function $\dfrac{\sin x}{x}$. As we know that $\displaystyle \lim_{x \to 0}\left( \dfrac{\sin x}{x} \right)=0$, so applying this in the above expression we get:
$\Rightarrow \displaystyle \lim_{x \to 0}\left( \dfrac{1}{\dfrac{\sin x}{x}} \right)$
$\Rightarrow \dfrac{1}{1}$
Since any fraction having denominator as $1$, then the numerator of the fraction changes to an integer. So on doing this we get:
$\Rightarrow 1$
$\therefore $ The value of $\displaystyle \lim_{x \to 0}\left( x\csc x \right)$ is $1$.
Note: To solve the problem like this we need to first solve the function and then need to substitute the value of the limit to the function. When the fraction has a denominator as $1$, then the numerator of the fraction changes to an integer.
Complete step by step answer:
The question asks us to find the value of the function$\displaystyle \lim_{x \to 0}\left( x\csc x \right)$. We are given with a function which is a product of the algebraic function $x$ and the trigonometric function$\csc x$. The first step is to change the trigonometric function $\csc x$ into the terms of $\sin x$. So as you know, the trigonometric function $\csc x$ is the reciprocal of the trigonometric function $\sin x$. Mathematically it will be written as:
$\Rightarrow \csc x=\dfrac{1}{\sin x}$
$\Rightarrow x\csc x=x\dfrac{1}{\sin x}$
$\Rightarrow x\csc x=\dfrac{x}{\sin x}$
Now to find the value of $\displaystyle \lim_{x \to 0}\left( x\csc x \right)$which has become as $\displaystyle \lim_{x \to 0}\left( \dfrac{x}{\sin x} \right)$ we will divide both the numerator and the denominator of the function by $x$ , on doing this we get:
$\Rightarrow \displaystyle \lim_{x \to 0}\left( \dfrac{\dfrac{x}{x}}{\dfrac{\sin x}{x}} \right)$
On checking the numerator of the function we see that it cancels to give the result as $1$ as $\dfrac{x}{x}$ is $1$. Now on applying the limit to the function $\dfrac{\sin x}{x}$. As we know that $\displaystyle \lim_{x \to 0}\left( \dfrac{\sin x}{x} \right)=0$, so applying this in the above expression we get:
$\Rightarrow \displaystyle \lim_{x \to 0}\left( \dfrac{1}{\dfrac{\sin x}{x}} \right)$
$\Rightarrow \dfrac{1}{1}$
Since any fraction having denominator as $1$, then the numerator of the fraction changes to an integer. So on doing this we get:
$\Rightarrow 1$
$\therefore $ The value of $\displaystyle \lim_{x \to 0}\left( x\csc x \right)$ is $1$.
Note: To solve the problem like this we need to first solve the function and then need to substitute the value of the limit to the function. When the fraction has a denominator as $1$, then the numerator of the fraction changes to an integer.
Recently Updated Pages
Difference Between Prokaryotic Cells and Eukaryotic Cells
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
What is spore formation class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
What are the limitations of Rutherfords model of an class 11 chemistry CBSE