
Evaluate the following integral: $\int{{{\tan }^{\dfrac{3}{2}}}x{{\sec }^{2}}xdx}$
Answer
607.5k+ views
Hint: To find the value of a given integral, use the substitution method to simplify the given integral by assuming $t=\tan x$. Rewrite the given integral in terms of variable ‘t’. Evaluate the value of integral using the fact that $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}$. Rewrite the value of integral in terms of ‘x’.
Complete step-by-step answer:
We have to evaluate the value of the integral $\int{{{\tan }^{\dfrac{3}{2}}}x{{\sec }^{2}}xdx}$. We observe that this is an indefinite integral. An indefinite integral is a function that takes the antiderivative of another function. It represents a family of functions whose derivatives are the function given in the integral.
To find the value of the integral, we will simplify the given integral by substitution method.
Let’s assume that $t=\tan x.....\left( 1 \right)$. We will now differentiate the equation. Thus, we have $\dfrac{dt}{dx}={{\sec }^{2}}x$.
Cross multiplying the terms on both sides of the equality, we have $dt={{\sec }^{2}}xdx.....\left( 2 \right)$.
Substituting equation (1) and (2) in the given integral, we have $\int{{{\tan }^{\dfrac{3}{2}}}x{{\sec }^{2}}xdx}=\int{{{t}^{\dfrac{3}{2}}}dt}$.
We know that integral of a function of the form $y={{x}^{n}}$ is $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}$.
Substituting $n=\dfrac{3}{2}$ in the above formula, we have $\int{{{x}^{\dfrac{3}{2}}}dx}=\dfrac{{{x}^{\dfrac{5}{2}}}}{\dfrac{5}{2}}$.
Thus, we have $\int{{{\tan }^{\dfrac{3}{2}}}x{{\sec }^{2}}xdx}=\int{{{t}^{\dfrac{3}{2}}}dt}=\dfrac{{{t}^{\dfrac{5}{2}}}}{\dfrac{5}{2}}$.
Simplifying the above expression, we have $\int{{{\tan }^{\dfrac{3}{2}}}x{{\sec }^{2}}xdx}=\int{{{t}^{\dfrac{3}{2}}}dt}=\dfrac{2}{5}{{t}^{\dfrac{5}{2}}}$.
We will again substitute $t=\tan x$ in the above equation. Thus, we have $\int{{{\tan }^{\dfrac{3}{2}}}x{{\sec }^{2}}xdx}=\int{{{t}^{\dfrac{3}{2}}}dt}=\dfrac{2}{5}{{t}^{\dfrac{5}{2}}}=\dfrac{2}{5}{{\tan }^{\dfrac{5}{2}}}x$.
Hence, the value of the integral $\int{{{\tan }^{\dfrac{3}{2}}}x{{\sec }^{2}}xdx}$ is $\dfrac{2}{5}{{\tan }^{\dfrac{5}{2}}}x$.
Note: The substitution method is used when an integral contains some function and its first derivative. It’s important to keep in mind that the first derivative of $y=\tan x$ is $\dfrac{dy}{dx}={{\sec }^{2}}x$. Otherwise, we won’t be able to solve this question.
Complete step-by-step answer:
We have to evaluate the value of the integral $\int{{{\tan }^{\dfrac{3}{2}}}x{{\sec }^{2}}xdx}$. We observe that this is an indefinite integral. An indefinite integral is a function that takes the antiderivative of another function. It represents a family of functions whose derivatives are the function given in the integral.
To find the value of the integral, we will simplify the given integral by substitution method.
Let’s assume that $t=\tan x.....\left( 1 \right)$. We will now differentiate the equation. Thus, we have $\dfrac{dt}{dx}={{\sec }^{2}}x$.
Cross multiplying the terms on both sides of the equality, we have $dt={{\sec }^{2}}xdx.....\left( 2 \right)$.
Substituting equation (1) and (2) in the given integral, we have $\int{{{\tan }^{\dfrac{3}{2}}}x{{\sec }^{2}}xdx}=\int{{{t}^{\dfrac{3}{2}}}dt}$.
We know that integral of a function of the form $y={{x}^{n}}$ is $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}$.
Substituting $n=\dfrac{3}{2}$ in the above formula, we have $\int{{{x}^{\dfrac{3}{2}}}dx}=\dfrac{{{x}^{\dfrac{5}{2}}}}{\dfrac{5}{2}}$.
Thus, we have $\int{{{\tan }^{\dfrac{3}{2}}}x{{\sec }^{2}}xdx}=\int{{{t}^{\dfrac{3}{2}}}dt}=\dfrac{{{t}^{\dfrac{5}{2}}}}{\dfrac{5}{2}}$.
Simplifying the above expression, we have $\int{{{\tan }^{\dfrac{3}{2}}}x{{\sec }^{2}}xdx}=\int{{{t}^{\dfrac{3}{2}}}dt}=\dfrac{2}{5}{{t}^{\dfrac{5}{2}}}$.
We will again substitute $t=\tan x$ in the above equation. Thus, we have $\int{{{\tan }^{\dfrac{3}{2}}}x{{\sec }^{2}}xdx}=\int{{{t}^{\dfrac{3}{2}}}dt}=\dfrac{2}{5}{{t}^{\dfrac{5}{2}}}=\dfrac{2}{5}{{\tan }^{\dfrac{5}{2}}}x$.
Hence, the value of the integral $\int{{{\tan }^{\dfrac{3}{2}}}x{{\sec }^{2}}xdx}$ is $\dfrac{2}{5}{{\tan }^{\dfrac{5}{2}}}x$.
Note: The substitution method is used when an integral contains some function and its first derivative. It’s important to keep in mind that the first derivative of $y=\tan x$ is $\dfrac{dy}{dx}={{\sec }^{2}}x$. Otherwise, we won’t be able to solve this question.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

