Evaluate the expression $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sqrt{1+{{x}^{2}}}-
\sqrt{1+x}}{\sqrt{1+{{x}^{3}}-\sqrt{1+x}}}$
Last updated date: 28th Mar 2023
•
Total views: 309.3k
•
Views today: 7.90k
Answer
309.3k+ views
Hint: Use L’ Hopital Rule in this question, but remember to stop once the $\dfrac{0}{0}$ or $\dfrac{\infty
}{\infty }$ form disappears. For that though, confirm if the expression has $\dfrac{0}{0}$ or
$\dfrac{\infty }{\infty }$ form first.
Let’s first of all see if the limit has a $\dfrac{0}{0}$ or $\dfrac{\infty }{\infty }$ form at all. For
that, we’ll simply substitute the limiting value of $x$ that is given to us, and then see if we’re getting and
indeterminate form like the ones mentioned above. Thus, we need to substitute $x=0$ in
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sqrt{1+{{x}^{2}}}-\sqrt{1+x}}{\sqrt{1+{{x}^{3}}}-\sqrt{1+x}}$.
Doing so, we get,
$=\dfrac{\sqrt{1+0}-\sqrt{1+0}}{\sqrt{1+0}-\sqrt{1+x}}=\dfrac{\sqrt{1}-\sqrt{1}}{\sqrt{1}-\sqrt{1}}$
$=\dfrac{0}{0}$ form
Hence, it is one of the indeterminate forms mentioned above. Since it has the $\dfrac{0}{0}$ form, we
can now find it by using L’ Hopital Rule. However, let’s explore some other methods too.
For the first method, let’s follow the following path.
Take, $\dfrac{\left( \sqrt{1+{{x}^{2}}}-\sqrt{1+x} \right)}{\left( \sqrt{1+{{x}^{3}}}-\sqrt{1+x} \right)}$
Remove the subtraction of radicals by multiplying numerator and denominator by
$\left( \sqrt{1+{{x}^{2}}}+\sqrt{1+x} \right)\left( \sqrt{1+{{x}^{3}}}+\sqrt{1+x} \right)$
(That is the product of the conjugates of the numerator and the denominator).
Doing so, we get,
$\dfrac{\left( \left( 1+{{x}^{2}} \right)-\left( 1-x \right) \right)\left( \sqrt{1+{{x}^{3}}}+\sqrt{1+x}
\right)}{\left( \left( 1+{{x}^{3}} \right)-\left( 1-x \right) \right)\left( \sqrt{1+{{x}^{2}}}+\sqrt{1+x} \right)}$
$=\dfrac{x\left( x+1 \right)\left( \sqrt{1+{{x}^{3}}}+\sqrt{1+x} \right)}{x\left( {{x}^{2}}+1 \right)\left(
\sqrt{1+{{x}^{2}}}+\sqrt{1+x} \right)}$
$=\dfrac{(x+1)(\sqrt{1+{{x}^{3}}}+\sqrt{1+x})}{\left( {{x}^{2}}+1 \right)\left( \sqrt{1+{{x}^{2}}}+\sqrt{1+x}
\right)}$
Evaluating the limit as $\left( x\to 0 \right)$, we get
$=\dfrac{(1)(\sqrt{1+0}+\sqrt{1+0})}{\left( 0+1 \right)\left( \sqrt{1+0}+\sqrt{1+0} \right)}$
$\Rightarrow \dfrac{2}{2}=1$
Thus, we found the limit to be $=1$ using this method. Now let’s try another method.
Here’s the alternate method of solving this question :
By plugging in $0$ we get :
$\dfrac{\sqrt{1+{{\left( 0 \right)}^{2}}}-\sqrt{1+0}}{\sqrt{1+{{\left( 0 \right)}^{3}}}-
\sqrt{1+0}}=\dfrac{0}{0}$ form
Let’s use L’ Hopital Rule to solve this. L’ Hopital rule says that $\underset{x\to a}{\mathop{\lim
}}\,\dfrac{f(x)}{g(x)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f'(x)}{g'(x)}=\underset{x\to
a}{\mathop{\lim }}\,\dfrac{f''(x)}{g''(x)}=.....$ till our limit loses the indeterminate form. We keep
differentiating the numerator and denominator separately, until the indeterminate form goes away.
Thus, using L – HOPITAL RULE once,
We’ll differentiate numerator and denominator.
Numerator: $\dfrac{d}{dx}\left( {{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}-{{\left( 1+x
\right)}^{\dfrac{1}{2}}} \right)$
$=\dfrac{1}{2}{{\left( 1+{{x}^{2}} \right)}^{-\dfrac{1}{2}}}.2x-\dfrac{1}{2}{{\left( 1+x \right)}^{-
\dfrac{1}{2}}}.1$
$=\dfrac{x}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}}-\dfrac{1}{2{{\left( 1+x \right)}^{\dfrac{1}{2}}}}$
………………..(i)
Denominator: $\dfrac{d}{dx}\left( {{\left( 1+{{x}^{3}} \right)}^{\dfrac{1}{2}}}-{{\left( 1+x
\right)}^{\dfrac{1}{2}}} \right)$
$=\dfrac{1}{2}{{\left( 1+{{x}^{3}} \right)}^{-\dfrac{1}{2}}}.3{{x}^{2}}-\dfrac{1}{2}{{\left( 1+x \right)}^{-
\dfrac{1}{2}}}.1$
$=\dfrac{3{{x}^{2}}}{2{{\left( 1+{{x}^{3}} \right)}^{\dfrac{1}{2}}}}-\dfrac{1}{2{{\left( 1+x
\right)}^{\dfrac{1}{2}}}}$ …………..(ii)
Now, divide both the equation (i) and (ii) we get;
$=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{x}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}}-
\dfrac{1}{2{{\left( 1+x \right)}^{\dfrac{1}{2}}}}}{\dfrac{3{{x}^{2}}}{2{{\left( 1+{{x}^{3}}
\right)}^{\dfrac{1}{2}}}}-\dfrac{1}{2{{\left( 1+x \right)}^{\dfrac{1}{2}}}}}$
By plugging in zero;
$=\dfrac{\dfrac{0}{{{\left( 1+{{\left( 0 \right)}^{2}} \right)}^{\dfrac{1}{2}}}}-\dfrac{1}{2{{\left( 1+0
\right)}^{\dfrac{1}{2}}}}}{\dfrac{3{{\left( 0 \right)}^{2}}}{2{{\left( 1+{{\left( 0 \right)}^{3}}
\right)}^{\dfrac{1}{2}}}}-\dfrac{1}{2{{\left( 1+0 \right)}^{\dfrac{1}{2}}}}}$
$=\dfrac{-\dfrac{1}{2}}{-\dfrac{1}{2}}=1$
$\therefore \underset{x\to 0}{\mathop{\lim }}\,\left( \dfrac{\sqrt{1+{{x}^{2}}}-
\sqrt{1+x}}{\sqrt{1+{{x}^{3}}}-\sqrt{1+x}} \right)=1$
Therefore, we get the required limit as $1$ from both the methods applied.
Note: In this type of question you can see the form by putting limits and then apply the L – HOSPITAL
RULE, that says
i.e.,$\to \dfrac{\text{differentiate (Numerator)}}{\text{differentiate (Denominator)}}$ till the fraction
loses the indeterminate form. Be careful to not differentiate it further, you might get a zero in the
denominator, in which case the fraction will become undefined itself.
}{\infty }$ form disappears. For that though, confirm if the expression has $\dfrac{0}{0}$ or
$\dfrac{\infty }{\infty }$ form first.
Let’s first of all see if the limit has a $\dfrac{0}{0}$ or $\dfrac{\infty }{\infty }$ form at all. For
that, we’ll simply substitute the limiting value of $x$ that is given to us, and then see if we’re getting and
indeterminate form like the ones mentioned above. Thus, we need to substitute $x=0$ in
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sqrt{1+{{x}^{2}}}-\sqrt{1+x}}{\sqrt{1+{{x}^{3}}}-\sqrt{1+x}}$.
Doing so, we get,
$=\dfrac{\sqrt{1+0}-\sqrt{1+0}}{\sqrt{1+0}-\sqrt{1+x}}=\dfrac{\sqrt{1}-\sqrt{1}}{\sqrt{1}-\sqrt{1}}$
$=\dfrac{0}{0}$ form
Hence, it is one of the indeterminate forms mentioned above. Since it has the $\dfrac{0}{0}$ form, we
can now find it by using L’ Hopital Rule. However, let’s explore some other methods too.
For the first method, let’s follow the following path.
Take, $\dfrac{\left( \sqrt{1+{{x}^{2}}}-\sqrt{1+x} \right)}{\left( \sqrt{1+{{x}^{3}}}-\sqrt{1+x} \right)}$
Remove the subtraction of radicals by multiplying numerator and denominator by
$\left( \sqrt{1+{{x}^{2}}}+\sqrt{1+x} \right)\left( \sqrt{1+{{x}^{3}}}+\sqrt{1+x} \right)$
(That is the product of the conjugates of the numerator and the denominator).
Doing so, we get,
$\dfrac{\left( \left( 1+{{x}^{2}} \right)-\left( 1-x \right) \right)\left( \sqrt{1+{{x}^{3}}}+\sqrt{1+x}
\right)}{\left( \left( 1+{{x}^{3}} \right)-\left( 1-x \right) \right)\left( \sqrt{1+{{x}^{2}}}+\sqrt{1+x} \right)}$
$=\dfrac{x\left( x+1 \right)\left( \sqrt{1+{{x}^{3}}}+\sqrt{1+x} \right)}{x\left( {{x}^{2}}+1 \right)\left(
\sqrt{1+{{x}^{2}}}+\sqrt{1+x} \right)}$
$=\dfrac{(x+1)(\sqrt{1+{{x}^{3}}}+\sqrt{1+x})}{\left( {{x}^{2}}+1 \right)\left( \sqrt{1+{{x}^{2}}}+\sqrt{1+x}
\right)}$
Evaluating the limit as $\left( x\to 0 \right)$, we get
$=\dfrac{(1)(\sqrt{1+0}+\sqrt{1+0})}{\left( 0+1 \right)\left( \sqrt{1+0}+\sqrt{1+0} \right)}$
$\Rightarrow \dfrac{2}{2}=1$
Thus, we found the limit to be $=1$ using this method. Now let’s try another method.
Here’s the alternate method of solving this question :
By plugging in $0$ we get :
$\dfrac{\sqrt{1+{{\left( 0 \right)}^{2}}}-\sqrt{1+0}}{\sqrt{1+{{\left( 0 \right)}^{3}}}-
\sqrt{1+0}}=\dfrac{0}{0}$ form
Let’s use L’ Hopital Rule to solve this. L’ Hopital rule says that $\underset{x\to a}{\mathop{\lim
}}\,\dfrac{f(x)}{g(x)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f'(x)}{g'(x)}=\underset{x\to
a}{\mathop{\lim }}\,\dfrac{f''(x)}{g''(x)}=.....$ till our limit loses the indeterminate form. We keep
differentiating the numerator and denominator separately, until the indeterminate form goes away.
Thus, using L – HOPITAL RULE once,
We’ll differentiate numerator and denominator.
Numerator: $\dfrac{d}{dx}\left( {{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}-{{\left( 1+x
\right)}^{\dfrac{1}{2}}} \right)$
$=\dfrac{1}{2}{{\left( 1+{{x}^{2}} \right)}^{-\dfrac{1}{2}}}.2x-\dfrac{1}{2}{{\left( 1+x \right)}^{-
\dfrac{1}{2}}}.1$
$=\dfrac{x}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}}-\dfrac{1}{2{{\left( 1+x \right)}^{\dfrac{1}{2}}}}$
………………..(i)
Denominator: $\dfrac{d}{dx}\left( {{\left( 1+{{x}^{3}} \right)}^{\dfrac{1}{2}}}-{{\left( 1+x
\right)}^{\dfrac{1}{2}}} \right)$
$=\dfrac{1}{2}{{\left( 1+{{x}^{3}} \right)}^{-\dfrac{1}{2}}}.3{{x}^{2}}-\dfrac{1}{2}{{\left( 1+x \right)}^{-
\dfrac{1}{2}}}.1$
$=\dfrac{3{{x}^{2}}}{2{{\left( 1+{{x}^{3}} \right)}^{\dfrac{1}{2}}}}-\dfrac{1}{2{{\left( 1+x
\right)}^{\dfrac{1}{2}}}}$ …………..(ii)
Now, divide both the equation (i) and (ii) we get;
$=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{x}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}}-
\dfrac{1}{2{{\left( 1+x \right)}^{\dfrac{1}{2}}}}}{\dfrac{3{{x}^{2}}}{2{{\left( 1+{{x}^{3}}
\right)}^{\dfrac{1}{2}}}}-\dfrac{1}{2{{\left( 1+x \right)}^{\dfrac{1}{2}}}}}$
By plugging in zero;
$=\dfrac{\dfrac{0}{{{\left( 1+{{\left( 0 \right)}^{2}} \right)}^{\dfrac{1}{2}}}}-\dfrac{1}{2{{\left( 1+0
\right)}^{\dfrac{1}{2}}}}}{\dfrac{3{{\left( 0 \right)}^{2}}}{2{{\left( 1+{{\left( 0 \right)}^{3}}
\right)}^{\dfrac{1}{2}}}}-\dfrac{1}{2{{\left( 1+0 \right)}^{\dfrac{1}{2}}}}}$
$=\dfrac{-\dfrac{1}{2}}{-\dfrac{1}{2}}=1$
$\therefore \underset{x\to 0}{\mathop{\lim }}\,\left( \dfrac{\sqrt{1+{{x}^{2}}}-
\sqrt{1+x}}{\sqrt{1+{{x}^{3}}}-\sqrt{1+x}} \right)=1$
Therefore, we get the required limit as $1$ from both the methods applied.
Note: In this type of question you can see the form by putting limits and then apply the L – HOSPITAL
RULE, that says
i.e.,$\to \dfrac{\text{differentiate (Numerator)}}{\text{differentiate (Denominator)}}$ till the fraction
loses the indeterminate form. Be careful to not differentiate it further, you might get a zero in the
denominator, in which case the fraction will become undefined itself.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
