
Evaluate the expression $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sqrt{1+{{x}^{2}}}-
\sqrt{1+x}}{\sqrt{1+{{x}^{3}}-\sqrt{1+x}}}$
Answer
608.7k+ views
Hint: Use L’ Hopital Rule in this question, but remember to stop once the $\dfrac{0}{0}$ or $\dfrac{\infty
}{\infty }$ form disappears. For that though, confirm if the expression has $\dfrac{0}{0}$ or
$\dfrac{\infty }{\infty }$ form first.
Let’s first of all see if the limit has a $\dfrac{0}{0}$ or $\dfrac{\infty }{\infty }$ form at all. For
that, we’ll simply substitute the limiting value of $x$ that is given to us, and then see if we’re getting and
indeterminate form like the ones mentioned above. Thus, we need to substitute $x=0$ in
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sqrt{1+{{x}^{2}}}-\sqrt{1+x}}{\sqrt{1+{{x}^{3}}}-\sqrt{1+x}}$.
Doing so, we get,
$=\dfrac{\sqrt{1+0}-\sqrt{1+0}}{\sqrt{1+0}-\sqrt{1+x}}=\dfrac{\sqrt{1}-\sqrt{1}}{\sqrt{1}-\sqrt{1}}$
$=\dfrac{0}{0}$ form
Hence, it is one of the indeterminate forms mentioned above. Since it has the $\dfrac{0}{0}$ form, we
can now find it by using L’ Hopital Rule. However, let’s explore some other methods too.
For the first method, let’s follow the following path.
Take, $\dfrac{\left( \sqrt{1+{{x}^{2}}}-\sqrt{1+x} \right)}{\left( \sqrt{1+{{x}^{3}}}-\sqrt{1+x} \right)}$
Remove the subtraction of radicals by multiplying numerator and denominator by
$\left( \sqrt{1+{{x}^{2}}}+\sqrt{1+x} \right)\left( \sqrt{1+{{x}^{3}}}+\sqrt{1+x} \right)$
(That is the product of the conjugates of the numerator and the denominator).
Doing so, we get,
$\dfrac{\left( \left( 1+{{x}^{2}} \right)-\left( 1-x \right) \right)\left( \sqrt{1+{{x}^{3}}}+\sqrt{1+x}
\right)}{\left( \left( 1+{{x}^{3}} \right)-\left( 1-x \right) \right)\left( \sqrt{1+{{x}^{2}}}+\sqrt{1+x} \right)}$
$=\dfrac{x\left( x+1 \right)\left( \sqrt{1+{{x}^{3}}}+\sqrt{1+x} \right)}{x\left( {{x}^{2}}+1 \right)\left(
\sqrt{1+{{x}^{2}}}+\sqrt{1+x} \right)}$
$=\dfrac{(x+1)(\sqrt{1+{{x}^{3}}}+\sqrt{1+x})}{\left( {{x}^{2}}+1 \right)\left( \sqrt{1+{{x}^{2}}}+\sqrt{1+x}
\right)}$
Evaluating the limit as $\left( x\to 0 \right)$, we get
$=\dfrac{(1)(\sqrt{1+0}+\sqrt{1+0})}{\left( 0+1 \right)\left( \sqrt{1+0}+\sqrt{1+0} \right)}$
$\Rightarrow \dfrac{2}{2}=1$
Thus, we found the limit to be $=1$ using this method. Now let’s try another method.
Here’s the alternate method of solving this question :
By plugging in $0$ we get :
$\dfrac{\sqrt{1+{{\left( 0 \right)}^{2}}}-\sqrt{1+0}}{\sqrt{1+{{\left( 0 \right)}^{3}}}-
\sqrt{1+0}}=\dfrac{0}{0}$ form
Let’s use L’ Hopital Rule to solve this. L’ Hopital rule says that $\underset{x\to a}{\mathop{\lim
}}\,\dfrac{f(x)}{g(x)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f'(x)}{g'(x)}=\underset{x\to
a}{\mathop{\lim }}\,\dfrac{f''(x)}{g''(x)}=.....$ till our limit loses the indeterminate form. We keep
differentiating the numerator and denominator separately, until the indeterminate form goes away.
Thus, using L – HOPITAL RULE once,
We’ll differentiate numerator and denominator.
Numerator: $\dfrac{d}{dx}\left( {{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}-{{\left( 1+x
\right)}^{\dfrac{1}{2}}} \right)$
$=\dfrac{1}{2}{{\left( 1+{{x}^{2}} \right)}^{-\dfrac{1}{2}}}.2x-\dfrac{1}{2}{{\left( 1+x \right)}^{-
\dfrac{1}{2}}}.1$
$=\dfrac{x}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}}-\dfrac{1}{2{{\left( 1+x \right)}^{\dfrac{1}{2}}}}$
………………..(i)
Denominator: $\dfrac{d}{dx}\left( {{\left( 1+{{x}^{3}} \right)}^{\dfrac{1}{2}}}-{{\left( 1+x
\right)}^{\dfrac{1}{2}}} \right)$
$=\dfrac{1}{2}{{\left( 1+{{x}^{3}} \right)}^{-\dfrac{1}{2}}}.3{{x}^{2}}-\dfrac{1}{2}{{\left( 1+x \right)}^{-
\dfrac{1}{2}}}.1$
$=\dfrac{3{{x}^{2}}}{2{{\left( 1+{{x}^{3}} \right)}^{\dfrac{1}{2}}}}-\dfrac{1}{2{{\left( 1+x
\right)}^{\dfrac{1}{2}}}}$ …………..(ii)
Now, divide both the equation (i) and (ii) we get;
$=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{x}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}}-
\dfrac{1}{2{{\left( 1+x \right)}^{\dfrac{1}{2}}}}}{\dfrac{3{{x}^{2}}}{2{{\left( 1+{{x}^{3}}
\right)}^{\dfrac{1}{2}}}}-\dfrac{1}{2{{\left( 1+x \right)}^{\dfrac{1}{2}}}}}$
By plugging in zero;
$=\dfrac{\dfrac{0}{{{\left( 1+{{\left( 0 \right)}^{2}} \right)}^{\dfrac{1}{2}}}}-\dfrac{1}{2{{\left( 1+0
\right)}^{\dfrac{1}{2}}}}}{\dfrac{3{{\left( 0 \right)}^{2}}}{2{{\left( 1+{{\left( 0 \right)}^{3}}
\right)}^{\dfrac{1}{2}}}}-\dfrac{1}{2{{\left( 1+0 \right)}^{\dfrac{1}{2}}}}}$
$=\dfrac{-\dfrac{1}{2}}{-\dfrac{1}{2}}=1$
$\therefore \underset{x\to 0}{\mathop{\lim }}\,\left( \dfrac{\sqrt{1+{{x}^{2}}}-
\sqrt{1+x}}{\sqrt{1+{{x}^{3}}}-\sqrt{1+x}} \right)=1$
Therefore, we get the required limit as $1$ from both the methods applied.
Note: In this type of question you can see the form by putting limits and then apply the L – HOSPITAL
RULE, that says
i.e.,$\to \dfrac{\text{differentiate (Numerator)}}{\text{differentiate (Denominator)}}$ till the fraction
loses the indeterminate form. Be careful to not differentiate it further, you might get a zero in the
denominator, in which case the fraction will become undefined itself.
}{\infty }$ form disappears. For that though, confirm if the expression has $\dfrac{0}{0}$ or
$\dfrac{\infty }{\infty }$ form first.
Let’s first of all see if the limit has a $\dfrac{0}{0}$ or $\dfrac{\infty }{\infty }$ form at all. For
that, we’ll simply substitute the limiting value of $x$ that is given to us, and then see if we’re getting and
indeterminate form like the ones mentioned above. Thus, we need to substitute $x=0$ in
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sqrt{1+{{x}^{2}}}-\sqrt{1+x}}{\sqrt{1+{{x}^{3}}}-\sqrt{1+x}}$.
Doing so, we get,
$=\dfrac{\sqrt{1+0}-\sqrt{1+0}}{\sqrt{1+0}-\sqrt{1+x}}=\dfrac{\sqrt{1}-\sqrt{1}}{\sqrt{1}-\sqrt{1}}$
$=\dfrac{0}{0}$ form
Hence, it is one of the indeterminate forms mentioned above. Since it has the $\dfrac{0}{0}$ form, we
can now find it by using L’ Hopital Rule. However, let’s explore some other methods too.
For the first method, let’s follow the following path.
Take, $\dfrac{\left( \sqrt{1+{{x}^{2}}}-\sqrt{1+x} \right)}{\left( \sqrt{1+{{x}^{3}}}-\sqrt{1+x} \right)}$
Remove the subtraction of radicals by multiplying numerator and denominator by
$\left( \sqrt{1+{{x}^{2}}}+\sqrt{1+x} \right)\left( \sqrt{1+{{x}^{3}}}+\sqrt{1+x} \right)$
(That is the product of the conjugates of the numerator and the denominator).
Doing so, we get,
$\dfrac{\left( \left( 1+{{x}^{2}} \right)-\left( 1-x \right) \right)\left( \sqrt{1+{{x}^{3}}}+\sqrt{1+x}
\right)}{\left( \left( 1+{{x}^{3}} \right)-\left( 1-x \right) \right)\left( \sqrt{1+{{x}^{2}}}+\sqrt{1+x} \right)}$
$=\dfrac{x\left( x+1 \right)\left( \sqrt{1+{{x}^{3}}}+\sqrt{1+x} \right)}{x\left( {{x}^{2}}+1 \right)\left(
\sqrt{1+{{x}^{2}}}+\sqrt{1+x} \right)}$
$=\dfrac{(x+1)(\sqrt{1+{{x}^{3}}}+\sqrt{1+x})}{\left( {{x}^{2}}+1 \right)\left( \sqrt{1+{{x}^{2}}}+\sqrt{1+x}
\right)}$
Evaluating the limit as $\left( x\to 0 \right)$, we get
$=\dfrac{(1)(\sqrt{1+0}+\sqrt{1+0})}{\left( 0+1 \right)\left( \sqrt{1+0}+\sqrt{1+0} \right)}$
$\Rightarrow \dfrac{2}{2}=1$
Thus, we found the limit to be $=1$ using this method. Now let’s try another method.
Here’s the alternate method of solving this question :
By plugging in $0$ we get :
$\dfrac{\sqrt{1+{{\left( 0 \right)}^{2}}}-\sqrt{1+0}}{\sqrt{1+{{\left( 0 \right)}^{3}}}-
\sqrt{1+0}}=\dfrac{0}{0}$ form
Let’s use L’ Hopital Rule to solve this. L’ Hopital rule says that $\underset{x\to a}{\mathop{\lim
}}\,\dfrac{f(x)}{g(x)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f'(x)}{g'(x)}=\underset{x\to
a}{\mathop{\lim }}\,\dfrac{f''(x)}{g''(x)}=.....$ till our limit loses the indeterminate form. We keep
differentiating the numerator and denominator separately, until the indeterminate form goes away.
Thus, using L – HOPITAL RULE once,
We’ll differentiate numerator and denominator.
Numerator: $\dfrac{d}{dx}\left( {{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}-{{\left( 1+x
\right)}^{\dfrac{1}{2}}} \right)$
$=\dfrac{1}{2}{{\left( 1+{{x}^{2}} \right)}^{-\dfrac{1}{2}}}.2x-\dfrac{1}{2}{{\left( 1+x \right)}^{-
\dfrac{1}{2}}}.1$
$=\dfrac{x}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}}-\dfrac{1}{2{{\left( 1+x \right)}^{\dfrac{1}{2}}}}$
………………..(i)
Denominator: $\dfrac{d}{dx}\left( {{\left( 1+{{x}^{3}} \right)}^{\dfrac{1}{2}}}-{{\left( 1+x
\right)}^{\dfrac{1}{2}}} \right)$
$=\dfrac{1}{2}{{\left( 1+{{x}^{3}} \right)}^{-\dfrac{1}{2}}}.3{{x}^{2}}-\dfrac{1}{2}{{\left( 1+x \right)}^{-
\dfrac{1}{2}}}.1$
$=\dfrac{3{{x}^{2}}}{2{{\left( 1+{{x}^{3}} \right)}^{\dfrac{1}{2}}}}-\dfrac{1}{2{{\left( 1+x
\right)}^{\dfrac{1}{2}}}}$ …………..(ii)
Now, divide both the equation (i) and (ii) we get;
$=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{x}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}}-
\dfrac{1}{2{{\left( 1+x \right)}^{\dfrac{1}{2}}}}}{\dfrac{3{{x}^{2}}}{2{{\left( 1+{{x}^{3}}
\right)}^{\dfrac{1}{2}}}}-\dfrac{1}{2{{\left( 1+x \right)}^{\dfrac{1}{2}}}}}$
By plugging in zero;
$=\dfrac{\dfrac{0}{{{\left( 1+{{\left( 0 \right)}^{2}} \right)}^{\dfrac{1}{2}}}}-\dfrac{1}{2{{\left( 1+0
\right)}^{\dfrac{1}{2}}}}}{\dfrac{3{{\left( 0 \right)}^{2}}}{2{{\left( 1+{{\left( 0 \right)}^{3}}
\right)}^{\dfrac{1}{2}}}}-\dfrac{1}{2{{\left( 1+0 \right)}^{\dfrac{1}{2}}}}}$
$=\dfrac{-\dfrac{1}{2}}{-\dfrac{1}{2}}=1$
$\therefore \underset{x\to 0}{\mathop{\lim }}\,\left( \dfrac{\sqrt{1+{{x}^{2}}}-
\sqrt{1+x}}{\sqrt{1+{{x}^{3}}}-\sqrt{1+x}} \right)=1$
Therefore, we get the required limit as $1$ from both the methods applied.
Note: In this type of question you can see the form by putting limits and then apply the L – HOSPITAL
RULE, that says
i.e.,$\to \dfrac{\text{differentiate (Numerator)}}{\text{differentiate (Denominator)}}$ till the fraction
loses the indeterminate form. Be careful to not differentiate it further, you might get a zero in the
denominator, in which case the fraction will become undefined itself.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

