Evaluate the expression $\cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+...+\cos {{180}^{{}^\circ }}$ is equal to
(A) 1
(B) 0
(C) 2
(D) -1
Last updated date: 18th Mar 2023
•
Total views: 307.5k
•
Views today: 7.86k
Answer
307.5k+ views
Hint: Convert all the angles to acute angles i.e. between 0 to ${{90}^{{}^\circ }}$.
Here, we need to find summation of series between 0 to ${{90}^{{}^\circ }}$.
$\cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+...+\cos {{180}^{{}^\circ }}$
Let us suppose the series is denoted by S.
$S=\cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+...+\cos {{180}^{{}^\circ }}............\left( 1 \right)$
We need to know about trigonometric conversions (i.e. one function to another) by changing
the angles.
We have,
$S=\cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+...+\cos {{180}^{{}^\circ }}$
Let us write another series which has only cosine with obtuse angles.
$S'=\cos {{91}^{{}^\circ }}+\cos {{92}^{{}^\circ }}+\cos {{93}^{{}^\circ }}+...+\cos {{179}^{{}^\circ }}+\cos {{180}^{{}^\circ }}$
Let us convert one by one to acute angle cosines;
We can write $\cos {{91}^{{}^\circ }}$as $\cos \left( {{180}^{{}^\circ }}-{{89}^{{}^\circ }} \right)\text{ or }\cos \left( \pi -{{89}^{{}^\circ }} \right)$. As angle is in the form of multiple of
$\pi $ , which means no conversion of function only signs can be changed. $\left( \pi -{{89}^{{}^\circ }} \right)\text{ or }{{91}^{{}^\circ }}$lies in second quadrant where cos is
negative, so we can write
$\cos {{91}^{{}^\circ }}=\cos \left( {{180}^{{}^\circ }}-{{89}^{{}^\circ }} \right)=-\cos {{89}^{{}^\circ }}$
Similarly, $\cos {{92}^{{}^\circ }}$can be substitute as $\cos \left( {{180}^{{}^\circ }}-{{88}^{{}^\circ }} \right)=-\cos {{88}^{{}^\circ }}$
Similarly,
$\cos {{92}^{{}^\circ }}=\cos \left( {{180}^{{}^\circ }}-{{87}^{{}^\circ }} \right)=-\cos {{87}^{{}^\circ }}$
,, ,, ,,
,, ,, ,,
,, ,, ,,
,, ,, ,,
,, ,, ,,
$\begin{align}
& \cos {{179}^{{}^\circ }}=\cos \left( {{180}^{{}^\circ }}-{{1}^{{}^\circ }} \right)=-\cos {{1}^{{}^\circ }} \\
& \cos {{180}^{{}^\circ }}=\cos \left( {{180}^{{}^\circ }}-{{0}^{{}^\circ }} \right)=-\cos {{0}^{{}^\circ }} \\
\end{align}$
And, hence series S’ can be written as;
$S'=-\cos {{0}^{{}^\circ }}-\cos {{1}^{{}^\circ }}-\cos {{2}^{{}^\circ }}-...-\cos {{89}^{{}^\circ
}}........\left( 2 \right)$
Now, let us put the value of series S’ in series S.
We have,
$\begin{align}
& S=\cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+...+\cos {{179}^{{}^\circ
}}+\cos {{180}^{{}^\circ }} \\
& S=\left( \cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+.....\cos
{{90}^{{}^\circ }} \right)+\left( \cos {{91}^{{}^\circ }}+\cos {{92}^{{}^\circ }}+...+\cos
{{179}^{{}^\circ }}+\cos {{180}^{{}^\circ }} \right) \\
& S=\left( \cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+.....\cos
{{90}^{{}^\circ }} \right)+S' \\
\end{align}$
Putting value of S’ from equation (2) we get;
$S=\left( \cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+.....\cos
{{90}^{{}^\circ }} \right)-\left( \cos {{0}^{{}^\circ }}+\cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ
}}+.....+\cos {{89}^{{}^\circ }} \right)$
Taking similar terms in one bracket, we get;
$\begin{align}
& S=\left( \cos {{1}^{{}^\circ }}-\cos {{1}^{{}^\circ }} \right)+\left( \cos {{2}^{{}^\circ }}-\cos
{{2}^{{}^\circ }} \right)+\left( \cos {{3}^{{}^\circ }}-\cos {{3}^{{}^\circ }} \right)+.....\left( \cos
{{89}^{{}^\circ }}-\cos {{89}^{{}^\circ }} \right)+\left( \cos {{90}^{{}^\circ }}-\cos {{0}^{{}^\circ }}
\right) \\
& S=0+0+0......0+0-1 \\
& S=-1 \\
\end{align}$Hence, summation of series S is -1.
Option (D) is the correct answer.
Note: Another approach for the given question would be like;
$S=\cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+...+\cos {{179}^{{}^\circ
}}+\cos {{180}^{{}^\circ }}$
We have direct formula of cosine series
\[\begin{align}
& S=\cos A+\cos (A+D)+\cos (A+2D)+......\cos (A+(n-1)D) \\
& S=\dfrac{\cos \left( A+\dfrac{(n-1)}{2}D \right)\sin \dfrac{nD}{2}}{\sin \dfrac{D}{2}} \\
\end{align}\]
From the given series we have n=180, A=1, D=1
\[S=\dfrac{\cos \left( 1+\dfrac{179}{2}\left( 1 \right) \right)\sin \dfrac{180}{2}\left( 1
\right)}{\sin \left( \dfrac{1}{2} \right)}\]
\[\begin{align}
& S=\dfrac{\cos \left( \dfrac{181}{2} \right)\sin 90}{\sin \left( \dfrac{1}{2} \right)}=\dfrac{\cos \left( 90+\dfrac{1}{2} \right)}{\sin \left( \dfrac{1}{2} \right)}-\dfrac{-\sin
\left( \dfrac{1}{2} \right)}{\sin \left( \dfrac{1}{2} \right)} \\
& S=-1 \\
\end{align}\]
One can go wrong if he/she converts
$\cos \theta $ to sin form like;
$\begin{align}
& \cos {{91}^{{}^\circ }}=\cos \left( 90+1 \right)=-\sin 1 \\
& \cos {{92}^{{}^\circ }}=\cos \left( 90+2 \right)=-\sin 2 \\
\end{align}$
Here, one more step needs to do that convert all cos acute angles to sin by subtracting ${{90}^{{}^\circ }}$ to that. Hence, the answer will be the same but takes longer than the
given solution.
Converting one trigonometric function to another is a key point of the question and needs to
be visualized very well.
Here, we need to find summation of series between 0 to ${{90}^{{}^\circ }}$.
$\cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+...+\cos {{180}^{{}^\circ }}$
Let us suppose the series is denoted by S.
$S=\cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+...+\cos {{180}^{{}^\circ }}............\left( 1 \right)$
We need to know about trigonometric conversions (i.e. one function to another) by changing
the angles.
We have,
$S=\cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+...+\cos {{180}^{{}^\circ }}$
Let us write another series which has only cosine with obtuse angles.
$S'=\cos {{91}^{{}^\circ }}+\cos {{92}^{{}^\circ }}+\cos {{93}^{{}^\circ }}+...+\cos {{179}^{{}^\circ }}+\cos {{180}^{{}^\circ }}$
Let us convert one by one to acute angle cosines;
We can write $\cos {{91}^{{}^\circ }}$as $\cos \left( {{180}^{{}^\circ }}-{{89}^{{}^\circ }} \right)\text{ or }\cos \left( \pi -{{89}^{{}^\circ }} \right)$. As angle is in the form of multiple of
$\pi $ , which means no conversion of function only signs can be changed. $\left( \pi -{{89}^{{}^\circ }} \right)\text{ or }{{91}^{{}^\circ }}$lies in second quadrant where cos is
negative, so we can write
$\cos {{91}^{{}^\circ }}=\cos \left( {{180}^{{}^\circ }}-{{89}^{{}^\circ }} \right)=-\cos {{89}^{{}^\circ }}$
Similarly, $\cos {{92}^{{}^\circ }}$can be substitute as $\cos \left( {{180}^{{}^\circ }}-{{88}^{{}^\circ }} \right)=-\cos {{88}^{{}^\circ }}$
Similarly,
$\cos {{92}^{{}^\circ }}=\cos \left( {{180}^{{}^\circ }}-{{87}^{{}^\circ }} \right)=-\cos {{87}^{{}^\circ }}$
,, ,, ,,
,, ,, ,,
,, ,, ,,
,, ,, ,,
,, ,, ,,
$\begin{align}
& \cos {{179}^{{}^\circ }}=\cos \left( {{180}^{{}^\circ }}-{{1}^{{}^\circ }} \right)=-\cos {{1}^{{}^\circ }} \\
& \cos {{180}^{{}^\circ }}=\cos \left( {{180}^{{}^\circ }}-{{0}^{{}^\circ }} \right)=-\cos {{0}^{{}^\circ }} \\
\end{align}$
And, hence series S’ can be written as;
$S'=-\cos {{0}^{{}^\circ }}-\cos {{1}^{{}^\circ }}-\cos {{2}^{{}^\circ }}-...-\cos {{89}^{{}^\circ
}}........\left( 2 \right)$
Now, let us put the value of series S’ in series S.
We have,
$\begin{align}
& S=\cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+...+\cos {{179}^{{}^\circ
}}+\cos {{180}^{{}^\circ }} \\
& S=\left( \cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+.....\cos
{{90}^{{}^\circ }} \right)+\left( \cos {{91}^{{}^\circ }}+\cos {{92}^{{}^\circ }}+...+\cos
{{179}^{{}^\circ }}+\cos {{180}^{{}^\circ }} \right) \\
& S=\left( \cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+.....\cos
{{90}^{{}^\circ }} \right)+S' \\
\end{align}$
Putting value of S’ from equation (2) we get;
$S=\left( \cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+.....\cos
{{90}^{{}^\circ }} \right)-\left( \cos {{0}^{{}^\circ }}+\cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ
}}+.....+\cos {{89}^{{}^\circ }} \right)$
Taking similar terms in one bracket, we get;
$\begin{align}
& S=\left( \cos {{1}^{{}^\circ }}-\cos {{1}^{{}^\circ }} \right)+\left( \cos {{2}^{{}^\circ }}-\cos
{{2}^{{}^\circ }} \right)+\left( \cos {{3}^{{}^\circ }}-\cos {{3}^{{}^\circ }} \right)+.....\left( \cos
{{89}^{{}^\circ }}-\cos {{89}^{{}^\circ }} \right)+\left( \cos {{90}^{{}^\circ }}-\cos {{0}^{{}^\circ }}
\right) \\
& S=0+0+0......0+0-1 \\
& S=-1 \\
\end{align}$Hence, summation of series S is -1.
Option (D) is the correct answer.
Note: Another approach for the given question would be like;
$S=\cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+...+\cos {{179}^{{}^\circ
}}+\cos {{180}^{{}^\circ }}$
We have direct formula of cosine series
\[\begin{align}
& S=\cos A+\cos (A+D)+\cos (A+2D)+......\cos (A+(n-1)D) \\
& S=\dfrac{\cos \left( A+\dfrac{(n-1)}{2}D \right)\sin \dfrac{nD}{2}}{\sin \dfrac{D}{2}} \\
\end{align}\]
From the given series we have n=180, A=1, D=1
\[S=\dfrac{\cos \left( 1+\dfrac{179}{2}\left( 1 \right) \right)\sin \dfrac{180}{2}\left( 1
\right)}{\sin \left( \dfrac{1}{2} \right)}\]
\[\begin{align}
& S=\dfrac{\cos \left( \dfrac{181}{2} \right)\sin 90}{\sin \left( \dfrac{1}{2} \right)}=\dfrac{\cos \left( 90+\dfrac{1}{2} \right)}{\sin \left( \dfrac{1}{2} \right)}-\dfrac{-\sin
\left( \dfrac{1}{2} \right)}{\sin \left( \dfrac{1}{2} \right)} \\
& S=-1 \\
\end{align}\]
One can go wrong if he/she converts
$\cos \theta $ to sin form like;
$\begin{align}
& \cos {{91}^{{}^\circ }}=\cos \left( 90+1 \right)=-\sin 1 \\
& \cos {{92}^{{}^\circ }}=\cos \left( 90+2 \right)=-\sin 2 \\
\end{align}$
Here, one more step needs to do that convert all cos acute angles to sin by subtracting ${{90}^{{}^\circ }}$ to that. Hence, the answer will be the same but takes longer than the
given solution.
Converting one trigonometric function to another is a key point of the question and needs to
be visualized very well.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
