
Evaluate the expression $\cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+...+\cos {{180}^{{}^\circ }}$ is equal to
(A) 1
(B) 0
(C) 2
(D) -1
Answer
608.7k+ views
Hint: Convert all the angles to acute angles i.e. between 0 to ${{90}^{{}^\circ }}$.
Here, we need to find summation of series between 0 to ${{90}^{{}^\circ }}$.
$\cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+...+\cos {{180}^{{}^\circ }}$
Let us suppose the series is denoted by S.
$S=\cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+...+\cos {{180}^{{}^\circ }}............\left( 1 \right)$
We need to know about trigonometric conversions (i.e. one function to another) by changing
the angles.
We have,
$S=\cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+...+\cos {{180}^{{}^\circ }}$
Let us write another series which has only cosine with obtuse angles.
$S'=\cos {{91}^{{}^\circ }}+\cos {{92}^{{}^\circ }}+\cos {{93}^{{}^\circ }}+...+\cos {{179}^{{}^\circ }}+\cos {{180}^{{}^\circ }}$
Let us convert one by one to acute angle cosines;
We can write $\cos {{91}^{{}^\circ }}$as $\cos \left( {{180}^{{}^\circ }}-{{89}^{{}^\circ }} \right)\text{ or }\cos \left( \pi -{{89}^{{}^\circ }} \right)$. As angle is in the form of multiple of
$\pi $ , which means no conversion of function only signs can be changed. $\left( \pi -{{89}^{{}^\circ }} \right)\text{ or }{{91}^{{}^\circ }}$lies in second quadrant where cos is
negative, so we can write
$\cos {{91}^{{}^\circ }}=\cos \left( {{180}^{{}^\circ }}-{{89}^{{}^\circ }} \right)=-\cos {{89}^{{}^\circ }}$
Similarly, $\cos {{92}^{{}^\circ }}$can be substitute as $\cos \left( {{180}^{{}^\circ }}-{{88}^{{}^\circ }} \right)=-\cos {{88}^{{}^\circ }}$
Similarly,
$\cos {{92}^{{}^\circ }}=\cos \left( {{180}^{{}^\circ }}-{{87}^{{}^\circ }} \right)=-\cos {{87}^{{}^\circ }}$
,, ,, ,,
,, ,, ,,
,, ,, ,,
,, ,, ,,
,, ,, ,,
$\begin{align}
& \cos {{179}^{{}^\circ }}=\cos \left( {{180}^{{}^\circ }}-{{1}^{{}^\circ }} \right)=-\cos {{1}^{{}^\circ }} \\
& \cos {{180}^{{}^\circ }}=\cos \left( {{180}^{{}^\circ }}-{{0}^{{}^\circ }} \right)=-\cos {{0}^{{}^\circ }} \\
\end{align}$
And, hence series S’ can be written as;
$S'=-\cos {{0}^{{}^\circ }}-\cos {{1}^{{}^\circ }}-\cos {{2}^{{}^\circ }}-...-\cos {{89}^{{}^\circ
}}........\left( 2 \right)$
Now, let us put the value of series S’ in series S.
We have,
$\begin{align}
& S=\cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+...+\cos {{179}^{{}^\circ
}}+\cos {{180}^{{}^\circ }} \\
& S=\left( \cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+.....\cos
{{90}^{{}^\circ }} \right)+\left( \cos {{91}^{{}^\circ }}+\cos {{92}^{{}^\circ }}+...+\cos
{{179}^{{}^\circ }}+\cos {{180}^{{}^\circ }} \right) \\
& S=\left( \cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+.....\cos
{{90}^{{}^\circ }} \right)+S' \\
\end{align}$
Putting value of S’ from equation (2) we get;
$S=\left( \cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+.....\cos
{{90}^{{}^\circ }} \right)-\left( \cos {{0}^{{}^\circ }}+\cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ
}}+.....+\cos {{89}^{{}^\circ }} \right)$
Taking similar terms in one bracket, we get;
$\begin{align}
& S=\left( \cos {{1}^{{}^\circ }}-\cos {{1}^{{}^\circ }} \right)+\left( \cos {{2}^{{}^\circ }}-\cos
{{2}^{{}^\circ }} \right)+\left( \cos {{3}^{{}^\circ }}-\cos {{3}^{{}^\circ }} \right)+.....\left( \cos
{{89}^{{}^\circ }}-\cos {{89}^{{}^\circ }} \right)+\left( \cos {{90}^{{}^\circ }}-\cos {{0}^{{}^\circ }}
\right) \\
& S=0+0+0......0+0-1 \\
& S=-1 \\
\end{align}$Hence, summation of series S is -1.
Option (D) is the correct answer.
Note: Another approach for the given question would be like;
$S=\cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+...+\cos {{179}^{{}^\circ
}}+\cos {{180}^{{}^\circ }}$
We have direct formula of cosine series
\[\begin{align}
& S=\cos A+\cos (A+D)+\cos (A+2D)+......\cos (A+(n-1)D) \\
& S=\dfrac{\cos \left( A+\dfrac{(n-1)}{2}D \right)\sin \dfrac{nD}{2}}{\sin \dfrac{D}{2}} \\
\end{align}\]
From the given series we have n=180, A=1, D=1
\[S=\dfrac{\cos \left( 1+\dfrac{179}{2}\left( 1 \right) \right)\sin \dfrac{180}{2}\left( 1
\right)}{\sin \left( \dfrac{1}{2} \right)}\]
\[\begin{align}
& S=\dfrac{\cos \left( \dfrac{181}{2} \right)\sin 90}{\sin \left( \dfrac{1}{2} \right)}=\dfrac{\cos \left( 90+\dfrac{1}{2} \right)}{\sin \left( \dfrac{1}{2} \right)}-\dfrac{-\sin
\left( \dfrac{1}{2} \right)}{\sin \left( \dfrac{1}{2} \right)} \\
& S=-1 \\
\end{align}\]
One can go wrong if he/she converts
$\cos \theta $ to sin form like;
$\begin{align}
& \cos {{91}^{{}^\circ }}=\cos \left( 90+1 \right)=-\sin 1 \\
& \cos {{92}^{{}^\circ }}=\cos \left( 90+2 \right)=-\sin 2 \\
\end{align}$
Here, one more step needs to do that convert all cos acute angles to sin by subtracting ${{90}^{{}^\circ }}$ to that. Hence, the answer will be the same but takes longer than the
given solution.
Converting one trigonometric function to another is a key point of the question and needs to
be visualized very well.
Here, we need to find summation of series between 0 to ${{90}^{{}^\circ }}$.
$\cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+...+\cos {{180}^{{}^\circ }}$
Let us suppose the series is denoted by S.
$S=\cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+...+\cos {{180}^{{}^\circ }}............\left( 1 \right)$
We need to know about trigonometric conversions (i.e. one function to another) by changing
the angles.
We have,
$S=\cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+...+\cos {{180}^{{}^\circ }}$
Let us write another series which has only cosine with obtuse angles.
$S'=\cos {{91}^{{}^\circ }}+\cos {{92}^{{}^\circ }}+\cos {{93}^{{}^\circ }}+...+\cos {{179}^{{}^\circ }}+\cos {{180}^{{}^\circ }}$
Let us convert one by one to acute angle cosines;
We can write $\cos {{91}^{{}^\circ }}$as $\cos \left( {{180}^{{}^\circ }}-{{89}^{{}^\circ }} \right)\text{ or }\cos \left( \pi -{{89}^{{}^\circ }} \right)$. As angle is in the form of multiple of
$\pi $ , which means no conversion of function only signs can be changed. $\left( \pi -{{89}^{{}^\circ }} \right)\text{ or }{{91}^{{}^\circ }}$lies in second quadrant where cos is
negative, so we can write
$\cos {{91}^{{}^\circ }}=\cos \left( {{180}^{{}^\circ }}-{{89}^{{}^\circ }} \right)=-\cos {{89}^{{}^\circ }}$
Similarly, $\cos {{92}^{{}^\circ }}$can be substitute as $\cos \left( {{180}^{{}^\circ }}-{{88}^{{}^\circ }} \right)=-\cos {{88}^{{}^\circ }}$
Similarly,
$\cos {{92}^{{}^\circ }}=\cos \left( {{180}^{{}^\circ }}-{{87}^{{}^\circ }} \right)=-\cos {{87}^{{}^\circ }}$
,, ,, ,,
,, ,, ,,
,, ,, ,,
,, ,, ,,
,, ,, ,,
$\begin{align}
& \cos {{179}^{{}^\circ }}=\cos \left( {{180}^{{}^\circ }}-{{1}^{{}^\circ }} \right)=-\cos {{1}^{{}^\circ }} \\
& \cos {{180}^{{}^\circ }}=\cos \left( {{180}^{{}^\circ }}-{{0}^{{}^\circ }} \right)=-\cos {{0}^{{}^\circ }} \\
\end{align}$
And, hence series S’ can be written as;
$S'=-\cos {{0}^{{}^\circ }}-\cos {{1}^{{}^\circ }}-\cos {{2}^{{}^\circ }}-...-\cos {{89}^{{}^\circ
}}........\left( 2 \right)$
Now, let us put the value of series S’ in series S.
We have,
$\begin{align}
& S=\cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+...+\cos {{179}^{{}^\circ
}}+\cos {{180}^{{}^\circ }} \\
& S=\left( \cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+.....\cos
{{90}^{{}^\circ }} \right)+\left( \cos {{91}^{{}^\circ }}+\cos {{92}^{{}^\circ }}+...+\cos
{{179}^{{}^\circ }}+\cos {{180}^{{}^\circ }} \right) \\
& S=\left( \cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+.....\cos
{{90}^{{}^\circ }} \right)+S' \\
\end{align}$
Putting value of S’ from equation (2) we get;
$S=\left( \cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+.....\cos
{{90}^{{}^\circ }} \right)-\left( \cos {{0}^{{}^\circ }}+\cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ
}}+.....+\cos {{89}^{{}^\circ }} \right)$
Taking similar terms in one bracket, we get;
$\begin{align}
& S=\left( \cos {{1}^{{}^\circ }}-\cos {{1}^{{}^\circ }} \right)+\left( \cos {{2}^{{}^\circ }}-\cos
{{2}^{{}^\circ }} \right)+\left( \cos {{3}^{{}^\circ }}-\cos {{3}^{{}^\circ }} \right)+.....\left( \cos
{{89}^{{}^\circ }}-\cos {{89}^{{}^\circ }} \right)+\left( \cos {{90}^{{}^\circ }}-\cos {{0}^{{}^\circ }}
\right) \\
& S=0+0+0......0+0-1 \\
& S=-1 \\
\end{align}$Hence, summation of series S is -1.
Option (D) is the correct answer.
Note: Another approach for the given question would be like;
$S=\cos {{1}^{{}^\circ }}+\cos {{2}^{{}^\circ }}+\cos {{3}^{{}^\circ }}+...+\cos {{179}^{{}^\circ
}}+\cos {{180}^{{}^\circ }}$
We have direct formula of cosine series
\[\begin{align}
& S=\cos A+\cos (A+D)+\cos (A+2D)+......\cos (A+(n-1)D) \\
& S=\dfrac{\cos \left( A+\dfrac{(n-1)}{2}D \right)\sin \dfrac{nD}{2}}{\sin \dfrac{D}{2}} \\
\end{align}\]
From the given series we have n=180, A=1, D=1
\[S=\dfrac{\cos \left( 1+\dfrac{179}{2}\left( 1 \right) \right)\sin \dfrac{180}{2}\left( 1
\right)}{\sin \left( \dfrac{1}{2} \right)}\]
\[\begin{align}
& S=\dfrac{\cos \left( \dfrac{181}{2} \right)\sin 90}{\sin \left( \dfrac{1}{2} \right)}=\dfrac{\cos \left( 90+\dfrac{1}{2} \right)}{\sin \left( \dfrac{1}{2} \right)}-\dfrac{-\sin
\left( \dfrac{1}{2} \right)}{\sin \left( \dfrac{1}{2} \right)} \\
& S=-1 \\
\end{align}\]
One can go wrong if he/she converts
$\cos \theta $ to sin form like;
$\begin{align}
& \cos {{91}^{{}^\circ }}=\cos \left( 90+1 \right)=-\sin 1 \\
& \cos {{92}^{{}^\circ }}=\cos \left( 90+2 \right)=-\sin 2 \\
\end{align}$
Here, one more step needs to do that convert all cos acute angles to sin by subtracting ${{90}^{{}^\circ }}$ to that. Hence, the answer will be the same but takes longer than the
given solution.
Converting one trigonometric function to another is a key point of the question and needs to
be visualized very well.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

