Answer

Verified

374.1k+ views

**Hint:**Here, we have to find the determinant of the given matrix. We will convert the given matrix into a Row Echelon form by using elementary row operations. We will then use the Row echelon form of the matrix to find the determinant of the given matrix. The determinant of a matrix is a value obtained after crossing out a row and column by multiplying the determinant of a square matrix.

**Complete Step by Step Solution:**

We are given with a matrix \[\left( {\begin{array}{*{20}{l}}0&3&1\\1&1&2\\3&2&4\end{array}} \right)\].

Now, we will reduce the given matrix to row echelon form by using elementary row operations.

First, we will interchange the first row and the second row, so we get

\[ \Rightarrow \left( {\begin{array}{*{20}{l}}0&3&1\\1&1&2\\3&2&4\end{array}} \right) = \left( {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\3&2&4\end{array}} \right)\]

Now, we will transform the first element of the third row as\[1\] by using the operation \[{R_3} \to {R_3} - 3{R_1}\]. So, we get

\[ \Rightarrow \left( {\begin{array}{*{20}{l}}0&3&1\\1&1&2\\3&2&4\end{array}} \right) = \left( {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\0&{ - 1}&{ - 2}\end{array}} \right)\]

Now, we will transform the second element of the third row as \[0\] by using the operation \[{R_3} \to {R_3} + \dfrac{{{R_2}}}{3}\]. So, we get

\[ \Rightarrow \left( {\begin{array}{*{20}{l}}0&3&1\\1&1&2\\3&2&4\end{array}} \right) = \left( {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\0&0&{ - \dfrac{5}{3}}\end{array}} \right)\]

We will now find the determinant of the above matrix which is in row-echelon form.

\[ \Rightarrow \left| {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\0&0&{ - \dfrac{5}{3}}\end{array}} \right| = 1\left| {\begin{array}{*{20}{l}}3&1\\0&{ - \dfrac{5}{3}}\end{array}} \right| - 1\left| {\begin{array}{*{20}{l}}0&1\\0&{ - \dfrac{5}{3}}\end{array}} \right| + 2\left| {\begin{array}{*{20}{l}}0&3\\0&0\end{array}} \right|\]

Simplifying the determinant, we get

\[ \Rightarrow \left| {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\0&0&{ - \dfrac{5}{3}}\end{array}} \right| = 1\left( 3 \right)\left( { - \dfrac{5}{3}} \right) - 1\left( {0 - 0} \right) + 2\left( {0 - 0} \right)\]

\[ \Rightarrow \left| {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\0&0&{ - \dfrac{5}{3}}\end{array}} \right| = 1 \times \left( 3 \right) \times \left( { - \dfrac{5}{3}} \right)\]

Multiplying the terms, we get

\[ \Rightarrow \left| {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\0&0&{ - \dfrac{5}{3}}\end{array}} \right| = - 5\]

Since a row has been interchanged, then the final determinant has to be multiplied by \[\left( { - 1} \right)\] . Therefore, we get

\[ \Rightarrow \left| {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\0&0&{ - \dfrac{5}{3}}\end{array}} \right| = \left( { - 1} \right) \times \left( { - 5} \right)\]

\[ \Rightarrow \left| {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\0&0&{ - \dfrac{5}{3}}\end{array}} \right| = 5\]

**Therefore the value of the determinant of the row echelon form of the given matrix is \[5\].**

**Note:**

We know that for every square matrix, we can associate a number which is called as the determinant of the matrix. Row echelon form is any matrix that has the first non-zero element in the first row should be one and the elements below the main diagonal should be zero. Row echelon form of a matrix is also an upper triangular matrix. Whenever a row or a column is interchanged then the determinant has to be multiplied by a negative sign.

Recently Updated Pages

Cryolite and fluorspar are mixed with Al2O3 during class 11 chemistry CBSE

Select the smallest atom A F B Cl C Br D I class 11 chemistry CBSE

The best reagent to convert pent 3 en 2 ol and pent class 11 chemistry CBSE

Reverse process of sublimation is aFusion bCondensation class 11 chemistry CBSE

The best and latest technique for isolation purification class 11 chemistry CBSE

Hydrochloric acid is a Strong acid b Weak acid c Strong class 11 chemistry CBSE

Trending doubts

Give 10 examples for herbs , shrubs , climbers , creepers

Difference Between Plant Cell and Animal Cell

Write a letter to the principal requesting him to grant class 10 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Name 10 Living and Non living things class 9 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

List some examples of Rabi and Kharif crops class 8 biology CBSE

Write the 6 fundamental rights of India and explain in detail