
How to evaluate the determinant of the given matrix by reducing the matrix to row echelon form? First row \[\left( {\begin{array}{*{20}{l}}0&3&1\end{array}} \right)\] , second row \[\left( {\begin{array}{*{20}{l}}1&1&2\end{array}} \right)\] and third row \[\left( {\begin{array}{*{20}{l}}3&2&4\end{array}} \right)\]?
Answer
552.6k+ views
Hint: Here, we have to find the determinant of the given matrix. We will convert the given matrix into a Row Echelon form by using elementary row operations. We will then use the Row echelon form of the matrix to find the determinant of the given matrix. The determinant of a matrix is a value obtained after crossing out a row and column by multiplying the determinant of a square matrix.
Complete Step by Step Solution:
We are given with a matrix \[\left( {\begin{array}{*{20}{l}}0&3&1\\1&1&2\\3&2&4\end{array}} \right)\].
Now, we will reduce the given matrix to row echelon form by using elementary row operations.
First, we will interchange the first row and the second row, so we get
\[ \Rightarrow \left( {\begin{array}{*{20}{l}}0&3&1\\1&1&2\\3&2&4\end{array}} \right) = \left( {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\3&2&4\end{array}} \right)\]
Now, we will transform the first element of the third row as\[1\] by using the operation \[{R_3} \to {R_3} - 3{R_1}\]. So, we get
\[ \Rightarrow \left( {\begin{array}{*{20}{l}}0&3&1\\1&1&2\\3&2&4\end{array}} \right) = \left( {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\0&{ - 1}&{ - 2}\end{array}} \right)\]
Now, we will transform the second element of the third row as \[0\] by using the operation \[{R_3} \to {R_3} + \dfrac{{{R_2}}}{3}\]. So, we get
\[ \Rightarrow \left( {\begin{array}{*{20}{l}}0&3&1\\1&1&2\\3&2&4\end{array}} \right) = \left( {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\0&0&{ - \dfrac{5}{3}}\end{array}} \right)\]
We will now find the determinant of the above matrix which is in row-echelon form.
\[ \Rightarrow \left| {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\0&0&{ - \dfrac{5}{3}}\end{array}} \right| = 1\left| {\begin{array}{*{20}{l}}3&1\\0&{ - \dfrac{5}{3}}\end{array}} \right| - 1\left| {\begin{array}{*{20}{l}}0&1\\0&{ - \dfrac{5}{3}}\end{array}} \right| + 2\left| {\begin{array}{*{20}{l}}0&3\\0&0\end{array}} \right|\]
Simplifying the determinant, we get
\[ \Rightarrow \left| {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\0&0&{ - \dfrac{5}{3}}\end{array}} \right| = 1\left( 3 \right)\left( { - \dfrac{5}{3}} \right) - 1\left( {0 - 0} \right) + 2\left( {0 - 0} \right)\]
\[ \Rightarrow \left| {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\0&0&{ - \dfrac{5}{3}}\end{array}} \right| = 1 \times \left( 3 \right) \times \left( { - \dfrac{5}{3}} \right)\]
Multiplying the terms, we get
\[ \Rightarrow \left| {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\0&0&{ - \dfrac{5}{3}}\end{array}} \right| = - 5\]
Since a row has been interchanged, then the final determinant has to be multiplied by \[\left( { - 1} \right)\] . Therefore, we get
\[ \Rightarrow \left| {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\0&0&{ - \dfrac{5}{3}}\end{array}} \right| = \left( { - 1} \right) \times \left( { - 5} \right)\]
\[ \Rightarrow \left| {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\0&0&{ - \dfrac{5}{3}}\end{array}} \right| = 5\]
Therefore the value of the determinant of the row echelon form of the given matrix is \[5\].
Note:
We know that for every square matrix, we can associate a number which is called as the determinant of the matrix. Row echelon form is any matrix that has the first non-zero element in the first row should be one and the elements below the main diagonal should be zero. Row echelon form of a matrix is also an upper triangular matrix. Whenever a row or a column is interchanged then the determinant has to be multiplied by a negative sign.
Complete Step by Step Solution:
We are given with a matrix \[\left( {\begin{array}{*{20}{l}}0&3&1\\1&1&2\\3&2&4\end{array}} \right)\].
Now, we will reduce the given matrix to row echelon form by using elementary row operations.
First, we will interchange the first row and the second row, so we get
\[ \Rightarrow \left( {\begin{array}{*{20}{l}}0&3&1\\1&1&2\\3&2&4\end{array}} \right) = \left( {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\3&2&4\end{array}} \right)\]
Now, we will transform the first element of the third row as\[1\] by using the operation \[{R_3} \to {R_3} - 3{R_1}\]. So, we get
\[ \Rightarrow \left( {\begin{array}{*{20}{l}}0&3&1\\1&1&2\\3&2&4\end{array}} \right) = \left( {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\0&{ - 1}&{ - 2}\end{array}} \right)\]
Now, we will transform the second element of the third row as \[0\] by using the operation \[{R_3} \to {R_3} + \dfrac{{{R_2}}}{3}\]. So, we get
\[ \Rightarrow \left( {\begin{array}{*{20}{l}}0&3&1\\1&1&2\\3&2&4\end{array}} \right) = \left( {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\0&0&{ - \dfrac{5}{3}}\end{array}} \right)\]
We will now find the determinant of the above matrix which is in row-echelon form.
\[ \Rightarrow \left| {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\0&0&{ - \dfrac{5}{3}}\end{array}} \right| = 1\left| {\begin{array}{*{20}{l}}3&1\\0&{ - \dfrac{5}{3}}\end{array}} \right| - 1\left| {\begin{array}{*{20}{l}}0&1\\0&{ - \dfrac{5}{3}}\end{array}} \right| + 2\left| {\begin{array}{*{20}{l}}0&3\\0&0\end{array}} \right|\]
Simplifying the determinant, we get
\[ \Rightarrow \left| {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\0&0&{ - \dfrac{5}{3}}\end{array}} \right| = 1\left( 3 \right)\left( { - \dfrac{5}{3}} \right) - 1\left( {0 - 0} \right) + 2\left( {0 - 0} \right)\]
\[ \Rightarrow \left| {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\0&0&{ - \dfrac{5}{3}}\end{array}} \right| = 1 \times \left( 3 \right) \times \left( { - \dfrac{5}{3}} \right)\]
Multiplying the terms, we get
\[ \Rightarrow \left| {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\0&0&{ - \dfrac{5}{3}}\end{array}} \right| = - 5\]
Since a row has been interchanged, then the final determinant has to be multiplied by \[\left( { - 1} \right)\] . Therefore, we get
\[ \Rightarrow \left| {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\0&0&{ - \dfrac{5}{3}}\end{array}} \right| = \left( { - 1} \right) \times \left( { - 5} \right)\]
\[ \Rightarrow \left| {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\0&0&{ - \dfrac{5}{3}}\end{array}} \right| = 5\]
Therefore the value of the determinant of the row echelon form of the given matrix is \[5\].
Note:
We know that for every square matrix, we can associate a number which is called as the determinant of the matrix. Row echelon form is any matrix that has the first non-zero element in the first row should be one and the elements below the main diagonal should be zero. Row echelon form of a matrix is also an upper triangular matrix. Whenever a row or a column is interchanged then the determinant has to be multiplied by a negative sign.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

