Answer

Verified

340.2k+ views

**Hint:**Here, we have to find the determinant of the given matrix. We will convert the given matrix into a Row Echelon form by using elementary row operations. We will then use the Row echelon form of the matrix to find the determinant of the given matrix. The determinant of a matrix is a value obtained after crossing out a row and column by multiplying the determinant of a square matrix.

**Complete Step by Step Solution:**

We are given with a matrix \[\left( {\begin{array}{*{20}{l}}0&3&1\\1&1&2\\3&2&4\end{array}} \right)\].

Now, we will reduce the given matrix to row echelon form by using elementary row operations.

First, we will interchange the first row and the second row, so we get

\[ \Rightarrow \left( {\begin{array}{*{20}{l}}0&3&1\\1&1&2\\3&2&4\end{array}} \right) = \left( {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\3&2&4\end{array}} \right)\]

Now, we will transform the first element of the third row as\[1\] by using the operation \[{R_3} \to {R_3} - 3{R_1}\]. So, we get

\[ \Rightarrow \left( {\begin{array}{*{20}{l}}0&3&1\\1&1&2\\3&2&4\end{array}} \right) = \left( {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\0&{ - 1}&{ - 2}\end{array}} \right)\]

Now, we will transform the second element of the third row as \[0\] by using the operation \[{R_3} \to {R_3} + \dfrac{{{R_2}}}{3}\]. So, we get

\[ \Rightarrow \left( {\begin{array}{*{20}{l}}0&3&1\\1&1&2\\3&2&4\end{array}} \right) = \left( {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\0&0&{ - \dfrac{5}{3}}\end{array}} \right)\]

We will now find the determinant of the above matrix which is in row-echelon form.

\[ \Rightarrow \left| {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\0&0&{ - \dfrac{5}{3}}\end{array}} \right| = 1\left| {\begin{array}{*{20}{l}}3&1\\0&{ - \dfrac{5}{3}}\end{array}} \right| - 1\left| {\begin{array}{*{20}{l}}0&1\\0&{ - \dfrac{5}{3}}\end{array}} \right| + 2\left| {\begin{array}{*{20}{l}}0&3\\0&0\end{array}} \right|\]

Simplifying the determinant, we get

\[ \Rightarrow \left| {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\0&0&{ - \dfrac{5}{3}}\end{array}} \right| = 1\left( 3 \right)\left( { - \dfrac{5}{3}} \right) - 1\left( {0 - 0} \right) + 2\left( {0 - 0} \right)\]

\[ \Rightarrow \left| {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\0&0&{ - \dfrac{5}{3}}\end{array}} \right| = 1 \times \left( 3 \right) \times \left( { - \dfrac{5}{3}} \right)\]

Multiplying the terms, we get

\[ \Rightarrow \left| {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\0&0&{ - \dfrac{5}{3}}\end{array}} \right| = - 5\]

Since a row has been interchanged, then the final determinant has to be multiplied by \[\left( { - 1} \right)\] . Therefore, we get

\[ \Rightarrow \left| {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\0&0&{ - \dfrac{5}{3}}\end{array}} \right| = \left( { - 1} \right) \times \left( { - 5} \right)\]

\[ \Rightarrow \left| {\begin{array}{*{20}{l}}1&1&2\\0&3&1\\0&0&{ - \dfrac{5}{3}}\end{array}} \right| = 5\]

**Therefore the value of the determinant of the row echelon form of the given matrix is \[5\].**

**Note:**

We know that for every square matrix, we can associate a number which is called as the determinant of the matrix. Row echelon form is any matrix that has the first non-zero element in the first row should be one and the elements below the main diagonal should be zero. Row echelon form of a matrix is also an upper triangular matrix. Whenever a row or a column is interchanged then the determinant has to be multiplied by a negative sign.

Recently Updated Pages

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE

Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE

What are the possible quantum number for the last outermost class 11 chemistry CBSE

Is C2 paramagnetic or diamagnetic class 11 chemistry CBSE

What happens when entropy reaches maximum class 11 chemistry JEE_Main

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Give simple chemical tests to distinguish between the class 12 chemistry CBSE

Difference Between Plant Cell and Animal Cell

Which of the following books is not written by Harshavardhana class 6 social science CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

In which states of India are mango showers common What class 9 social science CBSE

What Made Mr Keesing Allow Anne to Talk in Class class 10 english CBSE