
Evaluate \[\sin \left( {\dfrac{{2\pi }}{3}} \right)\] ?
Answer
505.5k+ views
Hint: Here in this question, we have to find the exact value of a given trigonometric function by using the sine sum or difference identity. First rewrite the given angle in the form of addition or difference, then the standard trigonometric formula sine sum i.e., \[\sin (A + B)\] or sine difference i.e., \[sin(A - B)\] identity defined as \[\sin A.cosB + cosA.sinB\] and \[sinA.cosB - cosA.sinB\] using one of these we get the required value.
Complete step-by-step answer:
To evaluate the given question by using a formula of cosine addition defined as the sine addition formula calculates the sine of an angle that is either the sum or difference of two other angles. It arises from the law of sines and the distance formula. By using the sine addition formula, the cosine of both the sum and difference of two angles can be found with the two angles' sines and cosines.
Consider the given function
\[\sin \left( {\dfrac{{2\pi }}{3}} \right)\] -------(1)
The angle \[\dfrac{{2\pi }}{3}\] can be written as \[\pi - \dfrac{\pi }{3}\] , then
Equation (1) becomes
\[ \Rightarrow \sin \left( {\pi - \dfrac{\pi }{3}} \right)\] ------(2)
Apply the trigonometric cosine identity of difference \[\sin (A - B) = \] \[sinA.cosB - cosA.sinB\] .
Here \[A = \pi \] and \[B = \dfrac{\pi }{3}\]
Substitute A and B in formula then
\[ \Rightarrow \sin \left( {\pi - \dfrac{\pi }{3}} \right) = sin\pi .cos\dfrac{\pi }{3} - cos\pi .sin\dfrac{\pi }{3}\]
By using specified cosine and sine angle i.e., \[cos\dfrac{\pi }{3} = \dfrac{1}{2}\] , \[cos\pi = - 1\] , \[sin\dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}\] and \[sin\pi = 0\]
On, Substituting the values, we have
\[ \Rightarrow \sin \left( {\pi - \dfrac{\pi }{3}} \right) = (0).\left( {\dfrac{1}{2}} \right) - ( - 1).\dfrac{{\sqrt 3 }}{2}\]
On simplification we get
\[ \Rightarrow \sin \left( {\pi - \dfrac{\pi }{3}} \right) = 0 + \dfrac{{\sqrt 3 }}{2}\]
\[ \Rightarrow \sin \left( {\dfrac{{2\pi }}{3}} \right) = \dfrac{{\sqrt 3 }}{2}\]
Hence, the exact functional value of \[\sin \left( {\dfrac{{2\pi }}{3}} \right) = \dfrac{{\sqrt 3 }}{2}\] .
So, the correct answer is “ \[ \dfrac{{\sqrt 3 }}{2}\] ”.
Note: Simply this can also be solve by using a ASTC rule i.e.,
\[ \Rightarrow \sin \left( {\dfrac{{2\pi }}{3}} \right) = \sin \left( {\pi - \dfrac{\pi }{3}} \right)\]
By using the ASTC rule of trigonometry, the angle \[\pi - \dfrac{\pi }{3}\] or angle \[180 - \theta \] lies in the second quadrant. sine function is positive here, hence the angle must in positive, then
\[ \Rightarrow \sin \left( {\dfrac{{2\pi }}{3}} \right) = \sin \left( {\dfrac{\pi }{3}} \right)\]
\[ \Rightarrow \sin \left( {\dfrac{{2\pi }}{3}} \right) = \dfrac{{\sqrt 3 }}{2}\]
While solving this type of question, we must know about the ASTC rule.
And also know the cosine sum or difference identity, for this we have a standard formula. To find the value for the trigonometry function we need the table of trigonometry ratios for standard angles.
Complete step-by-step answer:
To evaluate the given question by using a formula of cosine addition defined as the sine addition formula calculates the sine of an angle that is either the sum or difference of two other angles. It arises from the law of sines and the distance formula. By using the sine addition formula, the cosine of both the sum and difference of two angles can be found with the two angles' sines and cosines.
Consider the given function
\[\sin \left( {\dfrac{{2\pi }}{3}} \right)\] -------(1)
The angle \[\dfrac{{2\pi }}{3}\] can be written as \[\pi - \dfrac{\pi }{3}\] , then
Equation (1) becomes
\[ \Rightarrow \sin \left( {\pi - \dfrac{\pi }{3}} \right)\] ------(2)
Apply the trigonometric cosine identity of difference \[\sin (A - B) = \] \[sinA.cosB - cosA.sinB\] .
Here \[A = \pi \] and \[B = \dfrac{\pi }{3}\]
Substitute A and B in formula then
\[ \Rightarrow \sin \left( {\pi - \dfrac{\pi }{3}} \right) = sin\pi .cos\dfrac{\pi }{3} - cos\pi .sin\dfrac{\pi }{3}\]
By using specified cosine and sine angle i.e., \[cos\dfrac{\pi }{3} = \dfrac{1}{2}\] , \[cos\pi = - 1\] , \[sin\dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}\] and \[sin\pi = 0\]
On, Substituting the values, we have
\[ \Rightarrow \sin \left( {\pi - \dfrac{\pi }{3}} \right) = (0).\left( {\dfrac{1}{2}} \right) - ( - 1).\dfrac{{\sqrt 3 }}{2}\]
On simplification we get
\[ \Rightarrow \sin \left( {\pi - \dfrac{\pi }{3}} \right) = 0 + \dfrac{{\sqrt 3 }}{2}\]
\[ \Rightarrow \sin \left( {\dfrac{{2\pi }}{3}} \right) = \dfrac{{\sqrt 3 }}{2}\]
Hence, the exact functional value of \[\sin \left( {\dfrac{{2\pi }}{3}} \right) = \dfrac{{\sqrt 3 }}{2}\] .
So, the correct answer is “ \[ \dfrac{{\sqrt 3 }}{2}\] ”.
Note: Simply this can also be solve by using a ASTC rule i.e.,
\[ \Rightarrow \sin \left( {\dfrac{{2\pi }}{3}} \right) = \sin \left( {\pi - \dfrac{\pi }{3}} \right)\]
By using the ASTC rule of trigonometry, the angle \[\pi - \dfrac{\pi }{3}\] or angle \[180 - \theta \] lies in the second quadrant. sine function is positive here, hence the angle must in positive, then
\[ \Rightarrow \sin \left( {\dfrac{{2\pi }}{3}} \right) = \sin \left( {\dfrac{\pi }{3}} \right)\]
\[ \Rightarrow \sin \left( {\dfrac{{2\pi }}{3}} \right) = \dfrac{{\sqrt 3 }}{2}\]
While solving this type of question, we must know about the ASTC rule.
And also know the cosine sum or difference identity, for this we have a standard formula. To find the value for the trigonometry function we need the table of trigonometry ratios for standard angles.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

