
Evaluate \[{\left( {\dfrac{a}{{2b}} + \dfrac{{2b}}{a}} \right)^2} - {\left( {\dfrac{a}{{2b}} - \dfrac{{2b}}{a}} \right)^2} - 4\]
A) 2
B) ab
C) a
D) 0
Answer
505.2k+ views
Hint: Students if we observe the problem, it is somewhat like \[{\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} - 4\]. This is the hint to solve the question. Instead of solving the original question we will consider the terms as a and b. and then solve it using the identity. And the answer of the identity will be replaced by the considered values.
Complete step by step solution:
Given that,
\[{\left( {\dfrac{a}{{2b}} + \dfrac{{2b}}{a}} \right)^2} - {\left( {\dfrac{a}{{2b}} - \dfrac{{2b}}{a}} \right)^2} - 4\]
Now if we compare it is same as \[{\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} - 4\]
We know that,
\[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\] and \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\].
So let a=\[\dfrac{a}{{2b}}\] and b=\[\dfrac{{2b}}{a}\] . now we will expand the bracket or equation we substituted.
\[ = {\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} - 4\]
Taking the expansion, we get,
\[ = {a^2} + 2ab + {b^2} - \left( {{a^2} - 2ab + {b^2}} \right) - 4\]
Multiplying the terms by the minus sign we get,
\[ = {a^2} + 2ab + {b^2} - {a^2} + 2ab - {b^2} - 4\]
Now cancel the same terms but with different signs,
\[ = 2ab + 2ab - 4\]
On adding we get,
\[ = 4ab - 4\]
Now we will resubstitute the values of a and b,
\[ = 4 \times \dfrac{a}{{2b}} \times \dfrac{{2b}}{a} - 4\]
Cancelling the same terms in the product,
\[ = 4 - 4\]
When a number is subtracted from the same number the answer is zero.
\[ = 0\]
Therefore, \[{\left( {\dfrac{a}{{2b}} + \dfrac{{2b}}{a}} \right)^2} - {\left( {\dfrac{a}{{2b}} - \dfrac{{2b}}{a}} \right)^2} - 4 = 0\]. So, option (D) is the correct answer.
Note:
Note that we can also expand the brackets directly but that can be tedious work. So we used the algebraic identities of expansion.
Second point that is to be noted is applicable in general mathematics as, in addition and subtraction we cancel the terms if they are of same value but different signs and the answer is zero; but in multiplication we cancel them when they are same but are present in numerator and denominator patterns regardless of the pattern and the answer is 1 for that cancellation.
Complete step by step solution:
Given that,
\[{\left( {\dfrac{a}{{2b}} + \dfrac{{2b}}{a}} \right)^2} - {\left( {\dfrac{a}{{2b}} - \dfrac{{2b}}{a}} \right)^2} - 4\]
Now if we compare it is same as \[{\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} - 4\]
We know that,
\[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\] and \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\].
So let a=\[\dfrac{a}{{2b}}\] and b=\[\dfrac{{2b}}{a}\] . now we will expand the bracket or equation we substituted.
\[ = {\left( {a + b} \right)^2} - {\left( {a - b} \right)^2} - 4\]
Taking the expansion, we get,
\[ = {a^2} + 2ab + {b^2} - \left( {{a^2} - 2ab + {b^2}} \right) - 4\]
Multiplying the terms by the minus sign we get,
\[ = {a^2} + 2ab + {b^2} - {a^2} + 2ab - {b^2} - 4\]
Now cancel the same terms but with different signs,
\[ = 2ab + 2ab - 4\]
On adding we get,
\[ = 4ab - 4\]
Now we will resubstitute the values of a and b,
\[ = 4 \times \dfrac{a}{{2b}} \times \dfrac{{2b}}{a} - 4\]
Cancelling the same terms in the product,
\[ = 4 - 4\]
When a number is subtracted from the same number the answer is zero.
\[ = 0\]
Therefore, \[{\left( {\dfrac{a}{{2b}} + \dfrac{{2b}}{a}} \right)^2} - {\left( {\dfrac{a}{{2b}} - \dfrac{{2b}}{a}} \right)^2} - 4 = 0\]. So, option (D) is the correct answer.
Note:
Note that we can also expand the brackets directly but that can be tedious work. So we used the algebraic identities of expansion.
Second point that is to be noted is applicable in general mathematics as, in addition and subtraction we cancel the terms if they are of same value but different signs and the answer is zero; but in multiplication we cancel them when they are same but are present in numerator and denominator patterns regardless of the pattern and the answer is 1 for that cancellation.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

