
Evaluate: $\int{{{e}^{x}}{{x}^{x}}\left( 2+\log x \right)dx}=$
A. ${{x}^{x}}+c$
B. ${{e}^{x}}\log x+c$
C. ${{e}^{x}}{{x}^{x}}+c$
D. ${{e}^{x}}+{{x}^{x}}+c$
Answer
511.5k+ views
Hint:We will be using the concepts of integral calculus to solve the problem. We will be using the technique of integration by substitution to solve the problem easily we will first let $y={{e}^{x}}{{x}^{x}}$ and differentiate the following with respect to x then we will substitute the value of dx in the given integral.
Complete step-by-step answer:
Now, we have been given an integral,
$\int{{{e}^{x}}{{x}^{x}}\left( 2+\log x \right)dx}$
We can rewrite it as,
$\int{{{e}^{x}}{{x}^{x}}\left( 1+\log x+1 \right)dx}$
Now, we will distribute ${{e}^{x}}{{x}^{x}}$ among $\left( 1+\log x \right)$ and 1. So, we have,
$\int{\left( {{e}^{x}}{{x}^{x}}\left( 1+\log x \right)+{{e}^{x}}{{x}^{x}} \right)dx}$
Now, we will substitute ${{e}^{x}}{{x}^{x}}$.
So, let $y={{e}^{x}}{{x}^{x}}$
Now, on differentiating this we have,
$\dfrac{dy}{dx}=\dfrac{d}{dx}\left( {{e}^{x}}{{x}^{x}} \right)$
Now, applying product rule of differentiation we have,
$\begin{align}
& =\dfrac{d}{dx}\left( {{e}^{x}} \right){{x}^{x}}+{{e}^{x}}\dfrac{d}{dx}\left( {{x}^{x}} \right) \\
& \dfrac{dy}{dx}={{e}^{x}}{{x}^{x}}+{{e}^{x}}\dfrac{d}{dx}\left( {{x}^{x}} \right).............\left( 1 \right) \\
\end{align}$
Now, for $\dfrac{d}{dx}\left( {{x}^{x}} \right)$ we let,
$z={{x}^{x}}$
Now, we take logs on both sides. So, we have,
$\log z=x\log x$
Now, differentiating both sides we have,
$\begin{align}
& \dfrac{1}{z}\dfrac{dz}{dx}=\dfrac{x}{x}+\log x \\
& \dfrac{1}{z}\dfrac{dz}{dx}=1+\log x \\
& \dfrac{dz}{dx}=z\left( 1+\log x \right) \\
\end{align}$
Now, re- substituting $z={{x}^{x}}$ we have,
$\dfrac{d}{dx}\left( {{x}^{x}} \right)={{x}^{x}}\left( 1+\log x \right)$
So, from (1) we have,
$\begin{align}
& \dfrac{dy}{dx}={{e}^{x}}{{x}^{x}}+{{e}^{x}}{{x}^{x}}\left( 1+\log x \right) \\
& \dfrac{dy}{{{e}^{x}}{{x}^{x}}+{{e}^{x}}{{x}^{x}}\left( 1+\log x \right)}=dx \\
\end{align}$
So, now the integral is on substituting $y={{x}^{x}}{{e}^{x}}$ and $dy$.
\[\begin{align}
& \int{{{x}^{x}}{{e}^{x}}\left( 2+\log x \right)=}\int{\dfrac{\left( {{e}^{x}}{{x}^{x}}+{{e}^{x}}{{x}^{x}}\left( 1+\log x \right) \right)dy}{\left( {{e}^{x}}{{x}^{x}}+{{e}^{x}}{{x}^{x}}\left( 1+\log x \right) \right)}} \\
& =\int{dy} \\
& =y+c \\
& \int{{{x}^{x}}{{e}^{x}}\left( 2+\log x \right)={{x}^{x}}{{e}^{x}}+c} \\
\end{align}\]
So, the correct option is option c.
Note: To solve these types of questions one should know the basic concepts of integral calculus. Also, it is important to note how we have substituted the value of $y={{x}^{x}}{{e}^{x}}$ by realising the fact that the integral given to us is differentiation of this only and hence if we substitute this, the problem will be simplified to a great extent.Students should remember the differentiation formulas i.e $\dfrac{d}{dx}\left( {{e}^{x}} \right)=e^x$ , $\dfrac{d}{dx}\left( \log x\right)=\dfrac{1}{x}$ and product rule of differentiation i.e $\dfrac{d}{dx}\left( uv\right)=u\dfrac{d}{dx}\left( v \right)+v\dfrac{d}{dx}\left( u \right)$ to solve these types of questions.
Complete step-by-step answer:
Now, we have been given an integral,
$\int{{{e}^{x}}{{x}^{x}}\left( 2+\log x \right)dx}$
We can rewrite it as,
$\int{{{e}^{x}}{{x}^{x}}\left( 1+\log x+1 \right)dx}$
Now, we will distribute ${{e}^{x}}{{x}^{x}}$ among $\left( 1+\log x \right)$ and 1. So, we have,
$\int{\left( {{e}^{x}}{{x}^{x}}\left( 1+\log x \right)+{{e}^{x}}{{x}^{x}} \right)dx}$
Now, we will substitute ${{e}^{x}}{{x}^{x}}$.
So, let $y={{e}^{x}}{{x}^{x}}$
Now, on differentiating this we have,
$\dfrac{dy}{dx}=\dfrac{d}{dx}\left( {{e}^{x}}{{x}^{x}} \right)$
Now, applying product rule of differentiation we have,
$\begin{align}
& =\dfrac{d}{dx}\left( {{e}^{x}} \right){{x}^{x}}+{{e}^{x}}\dfrac{d}{dx}\left( {{x}^{x}} \right) \\
& \dfrac{dy}{dx}={{e}^{x}}{{x}^{x}}+{{e}^{x}}\dfrac{d}{dx}\left( {{x}^{x}} \right).............\left( 1 \right) \\
\end{align}$
Now, for $\dfrac{d}{dx}\left( {{x}^{x}} \right)$ we let,
$z={{x}^{x}}$
Now, we take logs on both sides. So, we have,
$\log z=x\log x$
Now, differentiating both sides we have,
$\begin{align}
& \dfrac{1}{z}\dfrac{dz}{dx}=\dfrac{x}{x}+\log x \\
& \dfrac{1}{z}\dfrac{dz}{dx}=1+\log x \\
& \dfrac{dz}{dx}=z\left( 1+\log x \right) \\
\end{align}$
Now, re- substituting $z={{x}^{x}}$ we have,
$\dfrac{d}{dx}\left( {{x}^{x}} \right)={{x}^{x}}\left( 1+\log x \right)$
So, from (1) we have,
$\begin{align}
& \dfrac{dy}{dx}={{e}^{x}}{{x}^{x}}+{{e}^{x}}{{x}^{x}}\left( 1+\log x \right) \\
& \dfrac{dy}{{{e}^{x}}{{x}^{x}}+{{e}^{x}}{{x}^{x}}\left( 1+\log x \right)}=dx \\
\end{align}$
So, now the integral is on substituting $y={{x}^{x}}{{e}^{x}}$ and $dy$.
\[\begin{align}
& \int{{{x}^{x}}{{e}^{x}}\left( 2+\log x \right)=}\int{\dfrac{\left( {{e}^{x}}{{x}^{x}}+{{e}^{x}}{{x}^{x}}\left( 1+\log x \right) \right)dy}{\left( {{e}^{x}}{{x}^{x}}+{{e}^{x}}{{x}^{x}}\left( 1+\log x \right) \right)}} \\
& =\int{dy} \\
& =y+c \\
& \int{{{x}^{x}}{{e}^{x}}\left( 2+\log x \right)={{x}^{x}}{{e}^{x}}+c} \\
\end{align}\]
So, the correct option is option c.
Note: To solve these types of questions one should know the basic concepts of integral calculus. Also, it is important to note how we have substituted the value of $y={{x}^{x}}{{e}^{x}}$ by realising the fact that the integral given to us is differentiation of this only and hence if we substitute this, the problem will be simplified to a great extent.Students should remember the differentiation formulas i.e $\dfrac{d}{dx}\left( {{e}^{x}} \right)=e^x$ , $\dfrac{d}{dx}\left( \log x\right)=\dfrac{1}{x}$ and product rule of differentiation i.e $\dfrac{d}{dx}\left( uv\right)=u\dfrac{d}{dx}\left( v \right)+v\dfrac{d}{dx}\left( u \right)$ to solve these types of questions.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

Most of the Sinhalaspeaking people in Sri Lanka are class 12 social science CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What I want should not be confused with total inactivity class 12 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
