
Evaluate: $\int{{{e}^{x}}{{x}^{x}}\left( 2+\log x \right)dx}=$
A. ${{x}^{x}}+c$
B. ${{e}^{x}}\log x+c$
C. ${{e}^{x}}{{x}^{x}}+c$
D. ${{e}^{x}}+{{x}^{x}}+c$
Answer
592.2k+ views
Hint:We will be using the concepts of integral calculus to solve the problem. We will be using the technique of integration by substitution to solve the problem easily we will first let $y={{e}^{x}}{{x}^{x}}$ and differentiate the following with respect to x then we will substitute the value of dx in the given integral.
Complete step-by-step answer:
Now, we have been given an integral,
$\int{{{e}^{x}}{{x}^{x}}\left( 2+\log x \right)dx}$
We can rewrite it as,
$\int{{{e}^{x}}{{x}^{x}}\left( 1+\log x+1 \right)dx}$
Now, we will distribute ${{e}^{x}}{{x}^{x}}$ among $\left( 1+\log x \right)$ and 1. So, we have,
$\int{\left( {{e}^{x}}{{x}^{x}}\left( 1+\log x \right)+{{e}^{x}}{{x}^{x}} \right)dx}$
Now, we will substitute ${{e}^{x}}{{x}^{x}}$.
So, let $y={{e}^{x}}{{x}^{x}}$
Now, on differentiating this we have,
$\dfrac{dy}{dx}=\dfrac{d}{dx}\left( {{e}^{x}}{{x}^{x}} \right)$
Now, applying product rule of differentiation we have,
$\begin{align}
& =\dfrac{d}{dx}\left( {{e}^{x}} \right){{x}^{x}}+{{e}^{x}}\dfrac{d}{dx}\left( {{x}^{x}} \right) \\
& \dfrac{dy}{dx}={{e}^{x}}{{x}^{x}}+{{e}^{x}}\dfrac{d}{dx}\left( {{x}^{x}} \right).............\left( 1 \right) \\
\end{align}$
Now, for $\dfrac{d}{dx}\left( {{x}^{x}} \right)$ we let,
$z={{x}^{x}}$
Now, we take logs on both sides. So, we have,
$\log z=x\log x$
Now, differentiating both sides we have,
$\begin{align}
& \dfrac{1}{z}\dfrac{dz}{dx}=\dfrac{x}{x}+\log x \\
& \dfrac{1}{z}\dfrac{dz}{dx}=1+\log x \\
& \dfrac{dz}{dx}=z\left( 1+\log x \right) \\
\end{align}$
Now, re- substituting $z={{x}^{x}}$ we have,
$\dfrac{d}{dx}\left( {{x}^{x}} \right)={{x}^{x}}\left( 1+\log x \right)$
So, from (1) we have,
$\begin{align}
& \dfrac{dy}{dx}={{e}^{x}}{{x}^{x}}+{{e}^{x}}{{x}^{x}}\left( 1+\log x \right) \\
& \dfrac{dy}{{{e}^{x}}{{x}^{x}}+{{e}^{x}}{{x}^{x}}\left( 1+\log x \right)}=dx \\
\end{align}$
So, now the integral is on substituting $y={{x}^{x}}{{e}^{x}}$ and $dy$.
\[\begin{align}
& \int{{{x}^{x}}{{e}^{x}}\left( 2+\log x \right)=}\int{\dfrac{\left( {{e}^{x}}{{x}^{x}}+{{e}^{x}}{{x}^{x}}\left( 1+\log x \right) \right)dy}{\left( {{e}^{x}}{{x}^{x}}+{{e}^{x}}{{x}^{x}}\left( 1+\log x \right) \right)}} \\
& =\int{dy} \\
& =y+c \\
& \int{{{x}^{x}}{{e}^{x}}\left( 2+\log x \right)={{x}^{x}}{{e}^{x}}+c} \\
\end{align}\]
So, the correct option is option c.
Note: To solve these types of questions one should know the basic concepts of integral calculus. Also, it is important to note how we have substituted the value of $y={{x}^{x}}{{e}^{x}}$ by realising the fact that the integral given to us is differentiation of this only and hence if we substitute this, the problem will be simplified to a great extent.Students should remember the differentiation formulas i.e $\dfrac{d}{dx}\left( {{e}^{x}} \right)=e^x$ , $\dfrac{d}{dx}\left( \log x\right)=\dfrac{1}{x}$ and product rule of differentiation i.e $\dfrac{d}{dx}\left( uv\right)=u\dfrac{d}{dx}\left( v \right)+v\dfrac{d}{dx}\left( u \right)$ to solve these types of questions.
Complete step-by-step answer:
Now, we have been given an integral,
$\int{{{e}^{x}}{{x}^{x}}\left( 2+\log x \right)dx}$
We can rewrite it as,
$\int{{{e}^{x}}{{x}^{x}}\left( 1+\log x+1 \right)dx}$
Now, we will distribute ${{e}^{x}}{{x}^{x}}$ among $\left( 1+\log x \right)$ and 1. So, we have,
$\int{\left( {{e}^{x}}{{x}^{x}}\left( 1+\log x \right)+{{e}^{x}}{{x}^{x}} \right)dx}$
Now, we will substitute ${{e}^{x}}{{x}^{x}}$.
So, let $y={{e}^{x}}{{x}^{x}}$
Now, on differentiating this we have,
$\dfrac{dy}{dx}=\dfrac{d}{dx}\left( {{e}^{x}}{{x}^{x}} \right)$
Now, applying product rule of differentiation we have,
$\begin{align}
& =\dfrac{d}{dx}\left( {{e}^{x}} \right){{x}^{x}}+{{e}^{x}}\dfrac{d}{dx}\left( {{x}^{x}} \right) \\
& \dfrac{dy}{dx}={{e}^{x}}{{x}^{x}}+{{e}^{x}}\dfrac{d}{dx}\left( {{x}^{x}} \right).............\left( 1 \right) \\
\end{align}$
Now, for $\dfrac{d}{dx}\left( {{x}^{x}} \right)$ we let,
$z={{x}^{x}}$
Now, we take logs on both sides. So, we have,
$\log z=x\log x$
Now, differentiating both sides we have,
$\begin{align}
& \dfrac{1}{z}\dfrac{dz}{dx}=\dfrac{x}{x}+\log x \\
& \dfrac{1}{z}\dfrac{dz}{dx}=1+\log x \\
& \dfrac{dz}{dx}=z\left( 1+\log x \right) \\
\end{align}$
Now, re- substituting $z={{x}^{x}}$ we have,
$\dfrac{d}{dx}\left( {{x}^{x}} \right)={{x}^{x}}\left( 1+\log x \right)$
So, from (1) we have,
$\begin{align}
& \dfrac{dy}{dx}={{e}^{x}}{{x}^{x}}+{{e}^{x}}{{x}^{x}}\left( 1+\log x \right) \\
& \dfrac{dy}{{{e}^{x}}{{x}^{x}}+{{e}^{x}}{{x}^{x}}\left( 1+\log x \right)}=dx \\
\end{align}$
So, now the integral is on substituting $y={{x}^{x}}{{e}^{x}}$ and $dy$.
\[\begin{align}
& \int{{{x}^{x}}{{e}^{x}}\left( 2+\log x \right)=}\int{\dfrac{\left( {{e}^{x}}{{x}^{x}}+{{e}^{x}}{{x}^{x}}\left( 1+\log x \right) \right)dy}{\left( {{e}^{x}}{{x}^{x}}+{{e}^{x}}{{x}^{x}}\left( 1+\log x \right) \right)}} \\
& =\int{dy} \\
& =y+c \\
& \int{{{x}^{x}}{{e}^{x}}\left( 2+\log x \right)={{x}^{x}}{{e}^{x}}+c} \\
\end{align}\]
So, the correct option is option c.
Note: To solve these types of questions one should know the basic concepts of integral calculus. Also, it is important to note how we have substituted the value of $y={{x}^{x}}{{e}^{x}}$ by realising the fact that the integral given to us is differentiation of this only and hence if we substitute this, the problem will be simplified to a great extent.Students should remember the differentiation formulas i.e $\dfrac{d}{dx}\left( {{e}^{x}} \right)=e^x$ , $\dfrac{d}{dx}\left( \log x\right)=\dfrac{1}{x}$ and product rule of differentiation i.e $\dfrac{d}{dx}\left( uv\right)=u\dfrac{d}{dx}\left( v \right)+v\dfrac{d}{dx}\left( u \right)$ to solve these types of questions.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

