
Evaluate: $\int{{{e}^{x}}{{x}^{x}}\left( 2+\log x \right)dx}=$
A. ${{x}^{x}}+c$
B. ${{e}^{x}}\log x+c$
C. ${{e}^{x}}{{x}^{x}}+c$
D. ${{e}^{x}}+{{x}^{x}}+c$
Answer
593.1k+ views
Hint:We will be using the concepts of integral calculus to solve the problem. We will be using the technique of integration by substitution to solve the problem easily we will first let $y={{e}^{x}}{{x}^{x}}$ and differentiate the following with respect to x then we will substitute the value of dx in the given integral.
Complete step-by-step answer:
Now, we have been given an integral,
$\int{{{e}^{x}}{{x}^{x}}\left( 2+\log x \right)dx}$
We can rewrite it as,
$\int{{{e}^{x}}{{x}^{x}}\left( 1+\log x+1 \right)dx}$
Now, we will distribute ${{e}^{x}}{{x}^{x}}$ among $\left( 1+\log x \right)$ and 1. So, we have,
$\int{\left( {{e}^{x}}{{x}^{x}}\left( 1+\log x \right)+{{e}^{x}}{{x}^{x}} \right)dx}$
Now, we will substitute ${{e}^{x}}{{x}^{x}}$.
So, let $y={{e}^{x}}{{x}^{x}}$
Now, on differentiating this we have,
$\dfrac{dy}{dx}=\dfrac{d}{dx}\left( {{e}^{x}}{{x}^{x}} \right)$
Now, applying product rule of differentiation we have,
$\begin{align}
& =\dfrac{d}{dx}\left( {{e}^{x}} \right){{x}^{x}}+{{e}^{x}}\dfrac{d}{dx}\left( {{x}^{x}} \right) \\
& \dfrac{dy}{dx}={{e}^{x}}{{x}^{x}}+{{e}^{x}}\dfrac{d}{dx}\left( {{x}^{x}} \right).............\left( 1 \right) \\
\end{align}$
Now, for $\dfrac{d}{dx}\left( {{x}^{x}} \right)$ we let,
$z={{x}^{x}}$
Now, we take logs on both sides. So, we have,
$\log z=x\log x$
Now, differentiating both sides we have,
$\begin{align}
& \dfrac{1}{z}\dfrac{dz}{dx}=\dfrac{x}{x}+\log x \\
& \dfrac{1}{z}\dfrac{dz}{dx}=1+\log x \\
& \dfrac{dz}{dx}=z\left( 1+\log x \right) \\
\end{align}$
Now, re- substituting $z={{x}^{x}}$ we have,
$\dfrac{d}{dx}\left( {{x}^{x}} \right)={{x}^{x}}\left( 1+\log x \right)$
So, from (1) we have,
$\begin{align}
& \dfrac{dy}{dx}={{e}^{x}}{{x}^{x}}+{{e}^{x}}{{x}^{x}}\left( 1+\log x \right) \\
& \dfrac{dy}{{{e}^{x}}{{x}^{x}}+{{e}^{x}}{{x}^{x}}\left( 1+\log x \right)}=dx \\
\end{align}$
So, now the integral is on substituting $y={{x}^{x}}{{e}^{x}}$ and $dy$.
\[\begin{align}
& \int{{{x}^{x}}{{e}^{x}}\left( 2+\log x \right)=}\int{\dfrac{\left( {{e}^{x}}{{x}^{x}}+{{e}^{x}}{{x}^{x}}\left( 1+\log x \right) \right)dy}{\left( {{e}^{x}}{{x}^{x}}+{{e}^{x}}{{x}^{x}}\left( 1+\log x \right) \right)}} \\
& =\int{dy} \\
& =y+c \\
& \int{{{x}^{x}}{{e}^{x}}\left( 2+\log x \right)={{x}^{x}}{{e}^{x}}+c} \\
\end{align}\]
So, the correct option is option c.
Note: To solve these types of questions one should know the basic concepts of integral calculus. Also, it is important to note how we have substituted the value of $y={{x}^{x}}{{e}^{x}}$ by realising the fact that the integral given to us is differentiation of this only and hence if we substitute this, the problem will be simplified to a great extent.Students should remember the differentiation formulas i.e $\dfrac{d}{dx}\left( {{e}^{x}} \right)=e^x$ , $\dfrac{d}{dx}\left( \log x\right)=\dfrac{1}{x}$ and product rule of differentiation i.e $\dfrac{d}{dx}\left( uv\right)=u\dfrac{d}{dx}\left( v \right)+v\dfrac{d}{dx}\left( u \right)$ to solve these types of questions.
Complete step-by-step answer:
Now, we have been given an integral,
$\int{{{e}^{x}}{{x}^{x}}\left( 2+\log x \right)dx}$
We can rewrite it as,
$\int{{{e}^{x}}{{x}^{x}}\left( 1+\log x+1 \right)dx}$
Now, we will distribute ${{e}^{x}}{{x}^{x}}$ among $\left( 1+\log x \right)$ and 1. So, we have,
$\int{\left( {{e}^{x}}{{x}^{x}}\left( 1+\log x \right)+{{e}^{x}}{{x}^{x}} \right)dx}$
Now, we will substitute ${{e}^{x}}{{x}^{x}}$.
So, let $y={{e}^{x}}{{x}^{x}}$
Now, on differentiating this we have,
$\dfrac{dy}{dx}=\dfrac{d}{dx}\left( {{e}^{x}}{{x}^{x}} \right)$
Now, applying product rule of differentiation we have,
$\begin{align}
& =\dfrac{d}{dx}\left( {{e}^{x}} \right){{x}^{x}}+{{e}^{x}}\dfrac{d}{dx}\left( {{x}^{x}} \right) \\
& \dfrac{dy}{dx}={{e}^{x}}{{x}^{x}}+{{e}^{x}}\dfrac{d}{dx}\left( {{x}^{x}} \right).............\left( 1 \right) \\
\end{align}$
Now, for $\dfrac{d}{dx}\left( {{x}^{x}} \right)$ we let,
$z={{x}^{x}}$
Now, we take logs on both sides. So, we have,
$\log z=x\log x$
Now, differentiating both sides we have,
$\begin{align}
& \dfrac{1}{z}\dfrac{dz}{dx}=\dfrac{x}{x}+\log x \\
& \dfrac{1}{z}\dfrac{dz}{dx}=1+\log x \\
& \dfrac{dz}{dx}=z\left( 1+\log x \right) \\
\end{align}$
Now, re- substituting $z={{x}^{x}}$ we have,
$\dfrac{d}{dx}\left( {{x}^{x}} \right)={{x}^{x}}\left( 1+\log x \right)$
So, from (1) we have,
$\begin{align}
& \dfrac{dy}{dx}={{e}^{x}}{{x}^{x}}+{{e}^{x}}{{x}^{x}}\left( 1+\log x \right) \\
& \dfrac{dy}{{{e}^{x}}{{x}^{x}}+{{e}^{x}}{{x}^{x}}\left( 1+\log x \right)}=dx \\
\end{align}$
So, now the integral is on substituting $y={{x}^{x}}{{e}^{x}}$ and $dy$.
\[\begin{align}
& \int{{{x}^{x}}{{e}^{x}}\left( 2+\log x \right)=}\int{\dfrac{\left( {{e}^{x}}{{x}^{x}}+{{e}^{x}}{{x}^{x}}\left( 1+\log x \right) \right)dy}{\left( {{e}^{x}}{{x}^{x}}+{{e}^{x}}{{x}^{x}}\left( 1+\log x \right) \right)}} \\
& =\int{dy} \\
& =y+c \\
& \int{{{x}^{x}}{{e}^{x}}\left( 2+\log x \right)={{x}^{x}}{{e}^{x}}+c} \\
\end{align}\]
So, the correct option is option c.
Note: To solve these types of questions one should know the basic concepts of integral calculus. Also, it is important to note how we have substituted the value of $y={{x}^{x}}{{e}^{x}}$ by realising the fact that the integral given to us is differentiation of this only and hence if we substitute this, the problem will be simplified to a great extent.Students should remember the differentiation formulas i.e $\dfrac{d}{dx}\left( {{e}^{x}} \right)=e^x$ , $\dfrac{d}{dx}\left( \log x\right)=\dfrac{1}{x}$ and product rule of differentiation i.e $\dfrac{d}{dx}\left( uv\right)=u\dfrac{d}{dx}\left( v \right)+v\dfrac{d}{dx}\left( u \right)$ to solve these types of questions.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

