
Evaluate \[\int {\dfrac{{x + 2}}{{\sqrt {{x^2} + 5x + 6} }}dx} .\]
Answer
523.5k+ views
Hint: To evaluate the given integral, first of all consider the given integral to be some variable, and then multiply and divide it with $2$ and then with help of algebraic operation, separate the integrand in two terms, then integrate them separately to evaluate the given integral.
Complete step by step solution:
In order to find the integral of the given integrand, let us consider the given integrand to be $I$, that is
$I = \int {\dfrac{{x + 2}}{{\sqrt {{x^2} + 5x + 6} }}dx} $
Now multiplying and dividing the integrand that is left hand side of the equation with $2$ to make the numerator such that it will be equals to the differentiation of denominator, to do this we have to do some algebraic operations too, that will be done further, after this step
$\Rightarrow I = 2 \times \dfrac{1}{2} \times \int {\dfrac{{x + 2}}{{\sqrt {{x^2} + 5x + 6} }}dx} $
We can write it as
$\Rightarrow I = \dfrac{1}{2} \times \int {\dfrac{{2x + 4}}{{\sqrt {{x^2} + 5x + 6} }}dx} $
Now, adding and subtracting $1$ in the numerator of the integrand, we will get
$ I = \dfrac{1}{2} \times \int {\dfrac{{2x + 4 + 1 - 1}}{{\sqrt {{x^2} + 5x + 6} }}dx} $
$ \Rightarrow I = \dfrac{1}{2} \times \int {\dfrac{{2x + 5 - 1}}{{\sqrt {{x^2} + 5x + 6} }}dx} $
We can also write it as
$ I = \dfrac{1}{2} \times \int {\dfrac{{(2x + 5) - 1}}{{\sqrt {{x^2} + 5x + 6} }}dx}$
$\Rightarrow I = \dfrac{1}{2} \times \int {\left( {\dfrac{{2x + 5}}{{\sqrt {{x^2} + 5x + 6} }} - \dfrac{1}{{\sqrt {{x^2} + 5x + 6} }}} \right)dx} $
Using distributive property of integration, we will get
\[ I = \dfrac{1}{2} \times \left( {\int {\dfrac{{2x + 5}}{{\sqrt {{x^2} + 5x + 6} }}dx} - \int {\dfrac{1}{{\sqrt {{x^2} + 5x + 6} }}dx} } \right)\]
Now, let us take ${x^2} + 5x + 6 = t \Rightarrow (2x + 5)dx = dt$ and completing the square of the denominator of the second term integrand,
We can write ${x^2} + 5x + 6 = {x^2} + 2 \times x \times \dfrac{5}{2} + {\left( {\dfrac{5}{2}} \right)^2} - {\left( {\dfrac{5}{2}} \right)^2} + 6 = {\left( {x + \dfrac{5}{2}} \right)^2} - \dfrac{{25}}{4} + 6 = \dfrac{{{{\left( {2x + 5} \right)}^2} - 1}}{4}$
Using above substitutions, we will get
\[ I = \dfrac{1}{2} \times \left( {\int {\dfrac{1}{{\sqrt t }}dt} - \int {\dfrac{1}{{\sqrt {\dfrac{{{{\left( {2x + 5} \right)}^2} - 1}}{4}} }}dx} } \right) \]
$ \Rightarrow I = \dfrac{1}{2} \times \left( {\dfrac{{{t^{ - \dfrac{1}{2} + 1}}}}{{ - \dfrac{1}{2} + 1}} - \int {\dfrac{1}{{\dfrac{{\sqrt {{{\left( {2x + 5} \right)}^2} - 1} }}{2}}}dx} } \right) $
$\Rightarrow I = \dfrac{1}{2} \times \left( {2{t^{\dfrac{1}{2}}} - \int {\dfrac{2}{{\sqrt {{{\left( {2x + 5} \right)}^2} - 1} }}dx} } \right) $
Taking $2x + 5 = u \Rightarrow 2dx = du$
\[\Rightarrow I = \dfrac{1}{2} \times \left( {2{t^{\dfrac{1}{2}}} + a - \int {\dfrac{1}{{\sqrt {{u^2} - 1} }}du} } \right) \]
$\Rightarrow I = \dfrac{1}{2} \times \left( {2{t^{\dfrac{1}{2}}} + a - \ln \left| {\sqrt {{u^2} - 1} - u} \right| + b} \right)$
$\Rightarrow I = \dfrac{1}{2} \times \left( {2{t^{\dfrac{1}{2}}} - \ln \left| {\sqrt {{u^2} - 1} - u} \right| + a + b} \right) $
Putting the values back, and simplifying further
\[I = {\left( {{x^2} + 5x + 6} \right)^{\dfrac{1}{2}}} - \dfrac{1}{2} \times \ln \left| {\sqrt {{{(2x + 5)}^2} - 1} - (2x + 5)} \right| + \dfrac{1}{2} \times \left( {a + b} \right)\]
Writing \[\dfrac{1}{2} \times \left( {a + b} \right) = c\] and simplifying further, we will get
\[I = {\left( {{x^2} + 5x + 6} \right)^{\dfrac{1}{2}}} - \dfrac{1}{2} \times \ln \left| {\sqrt {{{(2x + 5)}^2} - 1} - (2x + 5)} \right| + c\]
Therefore this is the required integral of the given integrand.
So, the correct answer is “ \[I = {\left( {{x^2} + 5x + 6} \right)^{\dfrac{1}{2}}} - \dfrac{1}{2} \times \ln \left| {\sqrt {{{(2x + 5)}^2} - 1} - (2x + 5)} \right| + c\] ”.
Note: We have written \[\dfrac{1}{2} \times \left( {a + b} \right) = c\] because in indefinite integration, we always get arbitrary constant which means the value will be constant but it will not be fixed, so we can take any variable to present it. Also to make the process easy you can separately integrate both the terms and then subtract them back finally to get the required integration.
Complete step by step solution:
In order to find the integral of the given integrand, let us consider the given integrand to be $I$, that is
$I = \int {\dfrac{{x + 2}}{{\sqrt {{x^2} + 5x + 6} }}dx} $
Now multiplying and dividing the integrand that is left hand side of the equation with $2$ to make the numerator such that it will be equals to the differentiation of denominator, to do this we have to do some algebraic operations too, that will be done further, after this step
$\Rightarrow I = 2 \times \dfrac{1}{2} \times \int {\dfrac{{x + 2}}{{\sqrt {{x^2} + 5x + 6} }}dx} $
We can write it as
$\Rightarrow I = \dfrac{1}{2} \times \int {\dfrac{{2x + 4}}{{\sqrt {{x^2} + 5x + 6} }}dx} $
Now, adding and subtracting $1$ in the numerator of the integrand, we will get
$ I = \dfrac{1}{2} \times \int {\dfrac{{2x + 4 + 1 - 1}}{{\sqrt {{x^2} + 5x + 6} }}dx} $
$ \Rightarrow I = \dfrac{1}{2} \times \int {\dfrac{{2x + 5 - 1}}{{\sqrt {{x^2} + 5x + 6} }}dx} $
We can also write it as
$ I = \dfrac{1}{2} \times \int {\dfrac{{(2x + 5) - 1}}{{\sqrt {{x^2} + 5x + 6} }}dx}$
$\Rightarrow I = \dfrac{1}{2} \times \int {\left( {\dfrac{{2x + 5}}{{\sqrt {{x^2} + 5x + 6} }} - \dfrac{1}{{\sqrt {{x^2} + 5x + 6} }}} \right)dx} $
Using distributive property of integration, we will get
\[ I = \dfrac{1}{2} \times \left( {\int {\dfrac{{2x + 5}}{{\sqrt {{x^2} + 5x + 6} }}dx} - \int {\dfrac{1}{{\sqrt {{x^2} + 5x + 6} }}dx} } \right)\]
Now, let us take ${x^2} + 5x + 6 = t \Rightarrow (2x + 5)dx = dt$ and completing the square of the denominator of the second term integrand,
We can write ${x^2} + 5x + 6 = {x^2} + 2 \times x \times \dfrac{5}{2} + {\left( {\dfrac{5}{2}} \right)^2} - {\left( {\dfrac{5}{2}} \right)^2} + 6 = {\left( {x + \dfrac{5}{2}} \right)^2} - \dfrac{{25}}{4} + 6 = \dfrac{{{{\left( {2x + 5} \right)}^2} - 1}}{4}$
Using above substitutions, we will get
\[ I = \dfrac{1}{2} \times \left( {\int {\dfrac{1}{{\sqrt t }}dt} - \int {\dfrac{1}{{\sqrt {\dfrac{{{{\left( {2x + 5} \right)}^2} - 1}}{4}} }}dx} } \right) \]
$ \Rightarrow I = \dfrac{1}{2} \times \left( {\dfrac{{{t^{ - \dfrac{1}{2} + 1}}}}{{ - \dfrac{1}{2} + 1}} - \int {\dfrac{1}{{\dfrac{{\sqrt {{{\left( {2x + 5} \right)}^2} - 1} }}{2}}}dx} } \right) $
$\Rightarrow I = \dfrac{1}{2} \times \left( {2{t^{\dfrac{1}{2}}} - \int {\dfrac{2}{{\sqrt {{{\left( {2x + 5} \right)}^2} - 1} }}dx} } \right) $
Taking $2x + 5 = u \Rightarrow 2dx = du$
\[\Rightarrow I = \dfrac{1}{2} \times \left( {2{t^{\dfrac{1}{2}}} + a - \int {\dfrac{1}{{\sqrt {{u^2} - 1} }}du} } \right) \]
$\Rightarrow I = \dfrac{1}{2} \times \left( {2{t^{\dfrac{1}{2}}} + a - \ln \left| {\sqrt {{u^2} - 1} - u} \right| + b} \right)$
$\Rightarrow I = \dfrac{1}{2} \times \left( {2{t^{\dfrac{1}{2}}} - \ln \left| {\sqrt {{u^2} - 1} - u} \right| + a + b} \right) $
Putting the values back, and simplifying further
\[I = {\left( {{x^2} + 5x + 6} \right)^{\dfrac{1}{2}}} - \dfrac{1}{2} \times \ln \left| {\sqrt {{{(2x + 5)}^2} - 1} - (2x + 5)} \right| + \dfrac{1}{2} \times \left( {a + b} \right)\]
Writing \[\dfrac{1}{2} \times \left( {a + b} \right) = c\] and simplifying further, we will get
\[I = {\left( {{x^2} + 5x + 6} \right)^{\dfrac{1}{2}}} - \dfrac{1}{2} \times \ln \left| {\sqrt {{{(2x + 5)}^2} - 1} - (2x + 5)} \right| + c\]
Therefore this is the required integral of the given integrand.
So, the correct answer is “ \[I = {\left( {{x^2} + 5x + 6} \right)^{\dfrac{1}{2}}} - \dfrac{1}{2} \times \ln \left| {\sqrt {{{(2x + 5)}^2} - 1} - (2x + 5)} \right| + c\] ”.
Note: We have written \[\dfrac{1}{2} \times \left( {a + b} \right) = c\] because in indefinite integration, we always get arbitrary constant which means the value will be constant but it will not be fixed, so we can take any variable to present it. Also to make the process easy you can separately integrate both the terms and then subtract them back finally to get the required integration.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

