
Evaluate \[\int {\dfrac{{x + 2}}{{\sqrt {{x^2} + 5x + 6} }}dx} .\]
Answer
476.4k+ views
Hint: To evaluate the given integral, first of all consider the given integral to be some variable, and then multiply and divide it with $2$ and then with help of algebraic operation, separate the integrand in two terms, then integrate them separately to evaluate the given integral.
Complete step by step solution:
In order to find the integral of the given integrand, let us consider the given integrand to be $I$, that is
$I = \int {\dfrac{{x + 2}}{{\sqrt {{x^2} + 5x + 6} }}dx} $
Now multiplying and dividing the integrand that is left hand side of the equation with $2$ to make the numerator such that it will be equals to the differentiation of denominator, to do this we have to do some algebraic operations too, that will be done further, after this step
$\Rightarrow I = 2 \times \dfrac{1}{2} \times \int {\dfrac{{x + 2}}{{\sqrt {{x^2} + 5x + 6} }}dx} $
We can write it as
$\Rightarrow I = \dfrac{1}{2} \times \int {\dfrac{{2x + 4}}{{\sqrt {{x^2} + 5x + 6} }}dx} $
Now, adding and subtracting $1$ in the numerator of the integrand, we will get
$ I = \dfrac{1}{2} \times \int {\dfrac{{2x + 4 + 1 - 1}}{{\sqrt {{x^2} + 5x + 6} }}dx} $
$ \Rightarrow I = \dfrac{1}{2} \times \int {\dfrac{{2x + 5 - 1}}{{\sqrt {{x^2} + 5x + 6} }}dx} $
We can also write it as
$ I = \dfrac{1}{2} \times \int {\dfrac{{(2x + 5) - 1}}{{\sqrt {{x^2} + 5x + 6} }}dx}$
$\Rightarrow I = \dfrac{1}{2} \times \int {\left( {\dfrac{{2x + 5}}{{\sqrt {{x^2} + 5x + 6} }} - \dfrac{1}{{\sqrt {{x^2} + 5x + 6} }}} \right)dx} $
Using distributive property of integration, we will get
\[ I = \dfrac{1}{2} \times \left( {\int {\dfrac{{2x + 5}}{{\sqrt {{x^2} + 5x + 6} }}dx} - \int {\dfrac{1}{{\sqrt {{x^2} + 5x + 6} }}dx} } \right)\]
Now, let us take ${x^2} + 5x + 6 = t \Rightarrow (2x + 5)dx = dt$ and completing the square of the denominator of the second term integrand,
We can write ${x^2} + 5x + 6 = {x^2} + 2 \times x \times \dfrac{5}{2} + {\left( {\dfrac{5}{2}} \right)^2} - {\left( {\dfrac{5}{2}} \right)^2} + 6 = {\left( {x + \dfrac{5}{2}} \right)^2} - \dfrac{{25}}{4} + 6 = \dfrac{{{{\left( {2x + 5} \right)}^2} - 1}}{4}$
Using above substitutions, we will get
\[ I = \dfrac{1}{2} \times \left( {\int {\dfrac{1}{{\sqrt t }}dt} - \int {\dfrac{1}{{\sqrt {\dfrac{{{{\left( {2x + 5} \right)}^2} - 1}}{4}} }}dx} } \right) \]
$ \Rightarrow I = \dfrac{1}{2} \times \left( {\dfrac{{{t^{ - \dfrac{1}{2} + 1}}}}{{ - \dfrac{1}{2} + 1}} - \int {\dfrac{1}{{\dfrac{{\sqrt {{{\left( {2x + 5} \right)}^2} - 1} }}{2}}}dx} } \right) $
$\Rightarrow I = \dfrac{1}{2} \times \left( {2{t^{\dfrac{1}{2}}} - \int {\dfrac{2}{{\sqrt {{{\left( {2x + 5} \right)}^2} - 1} }}dx} } \right) $
Taking $2x + 5 = u \Rightarrow 2dx = du$
\[\Rightarrow I = \dfrac{1}{2} \times \left( {2{t^{\dfrac{1}{2}}} + a - \int {\dfrac{1}{{\sqrt {{u^2} - 1} }}du} } \right) \]
$\Rightarrow I = \dfrac{1}{2} \times \left( {2{t^{\dfrac{1}{2}}} + a - \ln \left| {\sqrt {{u^2} - 1} - u} \right| + b} \right)$
$\Rightarrow I = \dfrac{1}{2} \times \left( {2{t^{\dfrac{1}{2}}} - \ln \left| {\sqrt {{u^2} - 1} - u} \right| + a + b} \right) $
Putting the values back, and simplifying further
\[I = {\left( {{x^2} + 5x + 6} \right)^{\dfrac{1}{2}}} - \dfrac{1}{2} \times \ln \left| {\sqrt {{{(2x + 5)}^2} - 1} - (2x + 5)} \right| + \dfrac{1}{2} \times \left( {a + b} \right)\]
Writing \[\dfrac{1}{2} \times \left( {a + b} \right) = c\] and simplifying further, we will get
\[I = {\left( {{x^2} + 5x + 6} \right)^{\dfrac{1}{2}}} - \dfrac{1}{2} \times \ln \left| {\sqrt {{{(2x + 5)}^2} - 1} - (2x + 5)} \right| + c\]
Therefore this is the required integral of the given integrand.
So, the correct answer is “ \[I = {\left( {{x^2} + 5x + 6} \right)^{\dfrac{1}{2}}} - \dfrac{1}{2} \times \ln \left| {\sqrt {{{(2x + 5)}^2} - 1} - (2x + 5)} \right| + c\] ”.
Note: We have written \[\dfrac{1}{2} \times \left( {a + b} \right) = c\] because in indefinite integration, we always get arbitrary constant which means the value will be constant but it will not be fixed, so we can take any variable to present it. Also to make the process easy you can separately integrate both the terms and then subtract them back finally to get the required integration.
Complete step by step solution:
In order to find the integral of the given integrand, let us consider the given integrand to be $I$, that is
$I = \int {\dfrac{{x + 2}}{{\sqrt {{x^2} + 5x + 6} }}dx} $
Now multiplying and dividing the integrand that is left hand side of the equation with $2$ to make the numerator such that it will be equals to the differentiation of denominator, to do this we have to do some algebraic operations too, that will be done further, after this step
$\Rightarrow I = 2 \times \dfrac{1}{2} \times \int {\dfrac{{x + 2}}{{\sqrt {{x^2} + 5x + 6} }}dx} $
We can write it as
$\Rightarrow I = \dfrac{1}{2} \times \int {\dfrac{{2x + 4}}{{\sqrt {{x^2} + 5x + 6} }}dx} $
Now, adding and subtracting $1$ in the numerator of the integrand, we will get
$ I = \dfrac{1}{2} \times \int {\dfrac{{2x + 4 + 1 - 1}}{{\sqrt {{x^2} + 5x + 6} }}dx} $
$ \Rightarrow I = \dfrac{1}{2} \times \int {\dfrac{{2x + 5 - 1}}{{\sqrt {{x^2} + 5x + 6} }}dx} $
We can also write it as
$ I = \dfrac{1}{2} \times \int {\dfrac{{(2x + 5) - 1}}{{\sqrt {{x^2} + 5x + 6} }}dx}$
$\Rightarrow I = \dfrac{1}{2} \times \int {\left( {\dfrac{{2x + 5}}{{\sqrt {{x^2} + 5x + 6} }} - \dfrac{1}{{\sqrt {{x^2} + 5x + 6} }}} \right)dx} $
Using distributive property of integration, we will get
\[ I = \dfrac{1}{2} \times \left( {\int {\dfrac{{2x + 5}}{{\sqrt {{x^2} + 5x + 6} }}dx} - \int {\dfrac{1}{{\sqrt {{x^2} + 5x + 6} }}dx} } \right)\]
Now, let us take ${x^2} + 5x + 6 = t \Rightarrow (2x + 5)dx = dt$ and completing the square of the denominator of the second term integrand,
We can write ${x^2} + 5x + 6 = {x^2} + 2 \times x \times \dfrac{5}{2} + {\left( {\dfrac{5}{2}} \right)^2} - {\left( {\dfrac{5}{2}} \right)^2} + 6 = {\left( {x + \dfrac{5}{2}} \right)^2} - \dfrac{{25}}{4} + 6 = \dfrac{{{{\left( {2x + 5} \right)}^2} - 1}}{4}$
Using above substitutions, we will get
\[ I = \dfrac{1}{2} \times \left( {\int {\dfrac{1}{{\sqrt t }}dt} - \int {\dfrac{1}{{\sqrt {\dfrac{{{{\left( {2x + 5} \right)}^2} - 1}}{4}} }}dx} } \right) \]
$ \Rightarrow I = \dfrac{1}{2} \times \left( {\dfrac{{{t^{ - \dfrac{1}{2} + 1}}}}{{ - \dfrac{1}{2} + 1}} - \int {\dfrac{1}{{\dfrac{{\sqrt {{{\left( {2x + 5} \right)}^2} - 1} }}{2}}}dx} } \right) $
$\Rightarrow I = \dfrac{1}{2} \times \left( {2{t^{\dfrac{1}{2}}} - \int {\dfrac{2}{{\sqrt {{{\left( {2x + 5} \right)}^2} - 1} }}dx} } \right) $
Taking $2x + 5 = u \Rightarrow 2dx = du$
\[\Rightarrow I = \dfrac{1}{2} \times \left( {2{t^{\dfrac{1}{2}}} + a - \int {\dfrac{1}{{\sqrt {{u^2} - 1} }}du} } \right) \]
$\Rightarrow I = \dfrac{1}{2} \times \left( {2{t^{\dfrac{1}{2}}} + a - \ln \left| {\sqrt {{u^2} - 1} - u} \right| + b} \right)$
$\Rightarrow I = \dfrac{1}{2} \times \left( {2{t^{\dfrac{1}{2}}} - \ln \left| {\sqrt {{u^2} - 1} - u} \right| + a + b} \right) $
Putting the values back, and simplifying further
\[I = {\left( {{x^2} + 5x + 6} \right)^{\dfrac{1}{2}}} - \dfrac{1}{2} \times \ln \left| {\sqrt {{{(2x + 5)}^2} - 1} - (2x + 5)} \right| + \dfrac{1}{2} \times \left( {a + b} \right)\]
Writing \[\dfrac{1}{2} \times \left( {a + b} \right) = c\] and simplifying further, we will get
\[I = {\left( {{x^2} + 5x + 6} \right)^{\dfrac{1}{2}}} - \dfrac{1}{2} \times \ln \left| {\sqrt {{{(2x + 5)}^2} - 1} - (2x + 5)} \right| + c\]
Therefore this is the required integral of the given integrand.
So, the correct answer is “ \[I = {\left( {{x^2} + 5x + 6} \right)^{\dfrac{1}{2}}} - \dfrac{1}{2} \times \ln \left| {\sqrt {{{(2x + 5)}^2} - 1} - (2x + 5)} \right| + c\] ”.
Note: We have written \[\dfrac{1}{2} \times \left( {a + b} \right) = c\] because in indefinite integration, we always get arbitrary constant which means the value will be constant but it will not be fixed, so we can take any variable to present it. Also to make the process easy you can separately integrate both the terms and then subtract them back finally to get the required integration.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
